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Quarter I
“We need no chieftain; such folk eat more than their share.”

– Jack Vance, Rhialto the Marvellous

This section will introduce you to some benchmark models of the macroeconomy and
to methods and tools that are commonly used in modern macroeconomics. It will cover
models of economic growth that can also be used to study economic fluctuations, con-
sumption, and investment. Most of the models will be dynamic and will include rational
optimizing agents. The basic model of economic growth comes from Solow. While the
model has no microfoundations, it is dynamic and it can serve as a building block for the
neoclassical growth model. You will be presented with different extensions of this model
that make the saving rate endogenous. You will first go over a model from Samuelson and
Diamond where individuals live for a finite number of periods (for simplicity, two) and
generations overlap. You will show that this simple model is very tractable and delivers
important insights for welfare theorems in economies with an infinite time horizon. As a
by-product, the model can also be used to study the role of fiat money and social security
schemes. The second type of models you will be presented with has infinitely lived indi-
viduals. You will consider the problem of optimal economic growth from Ramsey. You
will decentralize the Ramsey economy in order to obtain the neoclassical growth model
with markets, households, and firms. Finally, you will go over models of endogenous
growth. In terms of the methods, you will study dynamic systems (e.g., difference and
differential equations, phase diagrams. . . ) and dynamic optimization (optimal control
theory and dynamic programming).

1.1. The Solow Growth Model

How can we explain the huge income differences across countries? A major paradigm
began with Robert Solow and his contributions to the study of economic growth. The
Solow model is a building block of modern macroeconomics and looks at the determinants
of economic growth and the standard of living in the long run.

1.1.1. Solow’s Model

• 4 variables: output (Y ), capital (K), labor (L), and knowledge (A).
• A production function F [·] to link inputs and output.
• An equation for saving, investment, and capital accumulation.

Definition: The Neoclassical Production Function

Y (t) = F [K(t), A(t)L(t)]

• Y (t) is the flow of output; 1 good that can be consumed or invested.
• A(t) is labor augmenting technological progress that depends on time.
• A(t)L(t) are efficiency units of labor.

Properties:

• Diminishing marginal products with respect to each input

∂2F

∂K2
< 0 and

∂2F

∂L2
< 0.

• Constant returns to scale (C.R.S.) in its two arguments

F [cK, cAL] = cF [K,AL] for all c ≥ 0.
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• The production function satisfies the Inada conditions

lim
K→0

FK = lim
K→0

FL =∞

lim
K→∞

FK = lim
K→∞

FL = 0

1.1.2. Firm Optimization in the Solow Model

The firm’s profit maximization problem is

max
{K,L}

F [K(t), A(t)L(t)−R(t)K(t)− w(t)L(t)].

• The rental price of capital is R(t).
• The real wage is w(t).

The first order conditions are

w(t) = A(t)FL[K(t), A(t)L(t)]

R(t) = FK [K(t), A(t)L(t)].

Theorem: Euler’s Theorem
If F (x, y) has constant returns to scale—it is homogenous of degree 1—then

F (x, y) =
∂F (x, y)

∂x
x+

∂F (x, y)

∂y
y.

So,

F [K(t), A(t)L(t)] = FKK(t) +A(t)FLL(t)

F [K(t), A(t)L(t)] = R(t)K(t) + w(t)L(t).

Note that real profits are

π = F [K(t), A(t)L(t)]−R(t)K(t)− w(t)L(t)

π = R(t)K(t) + w(t)L(t)−R(t)K(t)− w(t)L(t) = 0

Thus, payment of input factors exhausts profits.

1.1.3. The Production Function in Intensive Form

To write the production function in intensive form, normalize all the variables by the
efficiency of labor supply A(t)L(t). The production of one elementary unit of effective
labor is

y(t) = F

(
K(t)

A(t)L(t)
, 1

)
≡ f

(
k(t)

)
with effective capital

k ≡ K(t)

A(t)L(t)
.

Properties:

• Monotonic: f ′(k) > 0
• Concave: f ′′(k)< 0
• limk→0 f ′(k) = +∞
• limk→+∞ f ′(k) = 0
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The rental price of capital is
R(t) = f ′[k(t)].

From Euler’s theorem

f [k(t)] = k(t)R(t) +
w(t)

A(t)
.

Therefore, the real wage is

w(t)

A(t)
= f [k(t)]− k(t)f ′[k(t)].

Example: The Cobb–Douglas Specification

F (K,AL) = Kα(AL)1−α , 0 < α < 1

Written in intensive form
f(k) = F (k, 1)

f(k) = kα

This production function satisfies the 3 properties of a neoclassical production function;
diminishing marginal returns, constant returns to scale, and the Inada conditions.

1.1.4. The Dynamics of the Solow Model

Labor grows at the rate n

L̇(t) = nL(t)⇒ L(t) = L(0)ent.

Knowledge grows at the rate g

Ȧ(t) = gA(t)⇒ A(t) = A(0)egt.

Agents save (invest) a fraction s of their income, while capital depreciates at rate δ

K̇(t) = sY (t)− δK(t).

Definition: The saving rate, s(·), is the fraction of output that is saved.

The rate should depend on preferences for curent and future consumption, the level of
wealth, the interest rate, etc. For simplification, s is assumed to be constant. This
assumption matters for short–run dynamics and welfare results.

Take the log of k = K/AL
ln k = lnK − lnA− lnL

differentiate with respect to time

k̇

k
=
K̇

K
− g − n

replace K̇/K to obtain

k̇

k
=
sY

K
− δ − g − n.

Thus, the transitional equation for capital is

k̇ = sy − (δ + g + n)k.
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1.1.5. The Steady–State Equilibrium

Definition: An equilibrium of the Solow model is a function k(t) that satisfies

k̇ = sf(k)− (δ + g + n)k

with the initial condition k(0) = k0.

Definition: The Balanced Growth Path
Note that sf(k) is actual investment per unit of effective labor and (δ + g + n)k is
breakeven investment. When actual investment equals breakeven investment, k̇ = 0,
there is a steady state such that

sf(k) = (δ + g + n)k.

• Since k is constant, K is growing at rate n+ g.
• Y = f(k)AL is also growing at rate n+ g.
• Capital per worker K/L = Ak, output per worker f(k)A, and consumption per

worker are growing at rate g.

Example: The Cobb–Douglas Specification
Production per efficient unit of labor is

f(k) = kα.

Steady–state capital per efficient unit of labor is

k∗ =

(
s

δ + g + n

) 1
1−α

.

The conclusion is that countries that have high savings rates will tend to be richer and
countries that have high population growth will tend to be poorer.

1.1.6. The Comparative Statics of the Solow Model

The effect from a change in the saving rate, s, on capital, k∗, is positive, found by
differentiating sf(k) = (δ + g + n), it is

∂k∗

∂s
=

f(k∗)

n+ g + δ − sf ′(k∗)
=

f(k∗)k∗

s]f(k∗)− k∗f ′(k∗)]
> 0.

The long run effect of a change in the saving rate, s, on output, y∗, is positive

∂y∗

∂s
= f ′(k∗)

∂k∗

∂s
=

f ′(k∗)f(k∗)k∗)

s[f(k∗)− k∗f ′(k∗)]
> 0.

The elasticity of output, y∗, with respect to the saving rate, s, is

s

y

∂y∗

∂s
=

f ′(k∗)k∗

f(k∗)− f ′(k∗)k∗
.

The effect from a change in a growth rate, n or g, on capital, k∗, is negative

∂k∗

∂n
=
∂k∗

∂g
=

−k∗

n+ g + δ − sf ′(k∗)
=

−(k∗)2

s[f(k∗)− k∗f ′(k∗)]
< 0.

Therefore,
s

y

∂y∗

∂s
=

αK(k∗)

1− αK(k∗)
with α+K(k∗) =

k∗f ′(k∗)

f(k∗)
.
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Example: Explaining Income Difference
Consider two countries, A and B. Let output per worker be Af(k) and assume that

yA = 10yB ⇒ ln yA − ln yB = ln 10.

Using the fact that

αK =
∆ ln y

∆ ln k

then

ln kA − ln kB =
ln 10

αK
.

If α = 1/3, then the difference in k should be

kA
kB

= 10
1
αK ' 103,

and there is no evidence of such differences in capital per worker, thus, differences in k
cannot account for large differences in y.

Alternatively, consider the rate of return on capital (without depreciation)

rK = f ′(k).

Under a Cobb-Douglas specification

f(k) = kα.

So,

rK = αkα−1 = αy
α−1
α .

If yA = 10yB and α = 1/3, then rK ≈ 1/3y−2 and

rK,B = 100rK,A.

There would be large incentives to invest in poor countries. Another way to explain
differences in y is from differences in A. However, the growth of A is exogenous; A
represents everything that we do not know.

1.1.7. The Golden–Rule of Capital Accumulation

Consumption per unit of effective labor is

c = f(k)− sf(k) = (1− s)f(k).

On the balanced growth path

c∗ = f(k∗)− (n+ g + δ)k∗.

Thus
∂c∗

∂s
= [f ′(k∗)− (n+ g + δ)]

∂k∗

∂s
.

Consumption is maximized when
∂c∗

∂s
= 0.

This occurs when
f ′(k∗) = n+ g + δ.
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Definition: The golden–rule saving rate, sgold, is the consumption–maximizing rate.

Definition: An economy is dynamically inefficient if s > sgold. A reduction of the
saving rate from s to sgold would provide more consumption during the transition toward
the new steady state, and more consumption at the steady state (i.e. the economy is
oversaving: consumption could be raised at all points in time).

Suppose that s < sgold. An increase of the saving rate would provide less consumption
during the transition toward the new steady state, but more consumption at the steady
state. Overall, the effect is positive if households do not care too much about current
consumption. In the Solow growth model, there is nothing to guarantee that k will
not be larger than the golden–rule level of capital. The saving decisions do not reflect
intertemporal trade–offs.

1.1.8. The Transitional Dynamics of the Solow Model

How does the economy converge to its steady–state? Define

γk ≡
k̇

k
= s

f(k)

k
− (δ + g + n).

Note that [
f(k)

k

]′
=
f ′(k)k − f(k)

k2
< 0.

Using l’Hopital’s rule it can be shown

lim
k→0

f(k)

k
= lim

k→0
f ′(k) =∞

lim
k→∞

f(k)

k
= lim

k→∞
f ′(k) = 0

If k < k∗, then γk > 0. The rate of growth of capital converges to 0 asymptotically.
This implies that there are diminishing returns to capital. Similarly, an increase in s
generates a positive effect on the growth rate of capital and output, but this effect is
transitory. It can be shown

∂γk
∂k

= s
f ′(k)k − f(k)

k2
< 0.

So
∂γk
∂k

< 0.

Definition: Absolute convergence is that, other things equal, counties with a low capital
stock per capita grow faster.

This concept suggests poor countries tend to catch up. For this to be true, countries
must have the same s, n, g, δ, and f(·).

Definition: Conditional convergence is that an economy grows faster the further it is
from its own steady–state value of capital.

Conditional convergence allows for heterogeneity across countries (i.e. countries may
have different steady–states). Use

s =
(δ + g + n)k∗

f(k∗)
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to rewrite γk as

γk = (δ + g + n)

[
f(k)/k

f(k∗)/k∗
− 1

]
.

To determine how rapidly k approaches k∗, use a 1st order Taylor–series approximation

k̇ = [sf ′(k∗)− (δ + g + n)](k − k∗).

Let λ be defined as
λ = −[sf ′(k∗)− (δ + g + n)] > 0.

The solution to the 1st order linear differential equation is

k(t)− k∗ = [k(0)− k∗] exp(−λt).

The speed of convergence depends on λ

λ = −[sf ′(k∗)− (δ + g + n)]

λ = −
[

(δ + g + n)k∗

f(k∗)
f ′(k∗)− (δ + g + n)

]
λ = (δ + g + n)[1− αK(k∗)].

Let τhalf be the time required to be half–way between the initial capital stock and its
steady–state value. Then

k(0)− k∗

2
= [k(0)− k∗] exp(−λτhalf)⇒ τhalf =

ln 2

λ
.

1.1.9. The Dynamics with the Cobb-Douglas Production Function

• The production function is f(k) = kα.
• The law of motion for capital is

k̇ = skα − (δ + g + n)k.

• Define x = k1−α. The law of motion for x(t) is

ẋ = (1− α)s− (1− α)(δ + g + n)x.

The solution to the linear differential equation is

x(t) =
s

δ + g + n
+

(
x(0)− s

δ + g + n

)
e−(1−α)(δ+g+n)t.

Therefore, the path for capital accumulation is

k(t) =

[
s

δ + g + n
+

(
k1−α

0 − s

δ + g + n

)
e−(1−α)(δ+g+n)t

] 1
1−α

.

The path for output accumulation is

y(t) =

[
s

δ + g + n
+

(
k1−α

0 − s

δ + g + n

)
e−(1−α)(δ+g+n)t

] α
1−α

.

Definition: The rate of adjustment is (1− α)(δ + g + n).
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A higher α means that there is less diminishing returns to capital, and hence a lower rate
of adjustment. Similarly, a lower depreciation rate, δ, or a lower rate of technological
progress, g, slows down the adjustment toward steady state.

The effects of an increase in the saving rate s are
• At any point in time, the capital stock and output increase.
• The path for consumption per efficient unit of labor is

c(t) = (1− 2)

[
s

δ + g + n
+

(
k1−α

0 − s

δ + g + n

)
e−(1−α)(δ+g+n)t

] α
1−α

.

• c(t) decreases for low t.
• c(t) increases for high t if s < α.

1.1.10. The Discrete–Time Solow Growth Model

Many macro models are written in discrete time. Suppose there is no population growth
(n = 0) and no technological progress (g = 0). The law of motion for the capital stock
is

kt+1 = kt + it − δkt
kt+1 = (1− δ)kt + syt

kt+1 = (1− δ)kt + sf(kt)

and is a first–order, nonlinear, difference equation.

There is an equilibrium (steady–state) such that

kt+1 = kt = k∗.

The solution is
f(k∗)

k∗
=
δ

s
.

Since f(k)/(k) is decreasing in k, there is a unique solution. Note that this is the same
expression as in the continuous–time model.

All equilibria converge to the positive steady–state. To see this note

kt+1 − kt
kt

= s

[
f(kt)

kt
− δ

s

]
=

[
f(kt)

kt
− f(k∗)

k∗

]
.

• If kt < k∗, then kt+1 > kt.
• If kt > k∗, then kt+1 < kt.
• Moreover,

kt+1 − k∗ = [(1− δ)kt + sf(kt)]− [(1− δ)k∗ + sf(k∗)]

has the same sign as kt − k∗.

Reading: Introduction and Section 1 of the paper titled ”A Contribution to the Em-
pirics of Economic Growth” by Mankiw, Romer and Weil (1992)

Reading: Chapter 2 and 3 from the book ”Barriers to Riches” by Parente and Prescott
(2000).
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1.2. Linear, First–Order Differential Equations

1.2.1. Autonomous Equations

The general form of the linear, autonomous, first–order differential equation is

ẏ + ay = b

where

ẏ =
∂y(t)

∂t

and a, b are known constants.
• Implicitly, y is a function of time t.
• Time is continuous (t ∈ R+).

Let z(t) be a particular solution to this differential equation

ż + az = b.

Take the difference with the general equation

(ẏ − ż) + a(y − z) = 0

˙̃y + aỹ = 0.

1.2.2. The Solution Method

• The first step is to find a solution ỹ to the homogeneous form ˙̃y + aỹ = 0.
• The second step is to find a particular solution to the complete equation z.

The general solution is
y = ỹ + z.

1.2.3. The Homogeneous Solution

The homogeneous solution form is

ẏ + ay = 0

where a 6= 0.

ẏ

y
= −a∫

ẏ

y
dt = −at+ c1.

Recall that ∫
f ′(x)

f(x)
dx = ln

(
f(x)

)
+ c,

if we assume that f(x) > 0 for all x. Therefore,∫
ẏ

y
dt = −at+ c1 ⇔ ln(y) + c2 = −at+ c1

y = exp[−at+ (c1 − c2)]

y = C exp[−at],

where C = ec1−c2 .
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Theorem: The general solution to the homogeneous form of the linear, autonomous,
first–order differential equation is

ỹ(t) = Ce−at.

Example:
ẏ − 3y = 0

ẏ

y
= 3.

Integrate both sides
ln y + c2 = 3t+ c1.

Simplify and take the exponential

y(t) = Ce3t.

1.2.4. The Particular Solution

When b is constant, a particular solution is the steady–state equilibrium value of y. A
steady–state value y of a differential equation is defined by ẏ = 0.

ẏ + ay = b ⇒̇
y=0

y =
b

a
.

Theorem: The general solution to the complete, autonomous, linear, first–order differ-
ential equation is

y(t) = Ce−at +
b

a
.

Example:
ẏ + 2y = 8.

In homogeneous form
˙̃y + 2ỹ = 0

ỹ = Ce−2t.

A particular solution is
ẏ = 0⇒ y = 4.

The general solution is
y(t) = ỹ(t) + y = Ce−2t + 4.

Example: Let K(t) be the capital stock at time t. Capital depreciates at the rate æ.
Investment per unit of time is I. The differential equation for capital is

K̇ = I − δK.

The homogeneous form is
˙̃
K = −δK̃

K̃(t) = Ce−δt.

The steady–state solution is

K̇ = 0⇒ K =
I

δ
.

The general solution is
K(t) = K̃(t) +K = Ce−δt +K
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1.2.5. The Initial Value

In order to determine the constant C of the general solution, you need to know the value
of y at some arbitrary time t0. Assume

y(t0) = y0.

From the general solution

y0 = Ce−at0 +
b

a

C = eat0
(
y0 −

b

a

)
.

The solution for the differential equation becomes

y(t) = eat0
(
y0 −

b

a

)
e−at +

b

a

y(t) =

(
y0 −

b

a

)
e−a(t−t0) +

b

a
.

Example: Consider the example about capital accumulation and assume K(0) = K0.
From the general solution

K0 = C +K ⇒ C = K0 −K
K(t) = (K0 −K)e−δt +K.

1.2.6. Convergence

Does y(t) converge to its steady–state value? Assume that y(0) = y0. It follows that

y(t) = (y0 − y)e−at + y.

and
lim

t→+∞
y(t) = y ⇔ lim

t→+∞
e−at = 0⇔ a > 0.

Theorem: The solution to a linear, autonomous, first–order differential equation, y(t),
converges to the steady–state equilibrium y = b

a , no matter what the initial value, y0, if
and only if the coefficient in the differential equation is positive, a > 0.
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1.3. Nonlinear, First–Order Differential Equations

1.3.1. Qualitative Analysis

Under which conditions can a solution to a nonlinear differential equation exist? Even if
a solution exists, it is in general difficult to find. Usually qualitative analysis (e.g. phase
diagrams) are useful.

Definition: The initial–value problem for an autonomous, nonlinear, first–order differ-
ential equation is expressed as

ẏ = g(y)

y(t0) = y0.

Theorem: If the function g and its partial derivative ∂g
∂y are continuous in some closed

rectangle containing the point (t0, y0), then in a neighborhood around t0 contained in
the rectangle, there is a unique solution, y = ξ(t), satisfying

ẏ = g(y)

y(t0) = y0.

Sometimes, you may not have an initial condition, but have a terminal condition or a
transversality condition (e.g. the dynamics of the price of an asset).

Example: Consider the following nonlinear differential equation

ẏ = y − y2 = y(1− y).

The steady–state values are

ẏ = 0⇒ y = 0 or y = 1.

The function g(y) = y − y2 is concave and reaches a maximum for y = 0.5.

1.3.2. Phase Diagrams

Definition: A phase diagram shows ẏ as a function of y.

It is useful to find the following.
• The range of y values of which y is increasing over time.
• The range of y values over which y is decreasing over time.
• Introduce arrows of motion to indicate the direction of motion of the variable y in

the different regions.
Remember that the phase diagram for a difference equation plots yt+1 as a function of
yt. Steady–states are at the intersection of the phase line and the 45◦degree line. The
phase diagram for a differential equation plots the change in y, ẏ, as a function of y.
Steady–states are at the intersection of the phase line and the horizontal axis.
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Figure I.1: Phase Diagram of a Differential Equation

1.3.3. Stability Analysis

To determine stability, you need to know the arrows of motion around the steady–state
values. In Figure I.1, y = 1 is a stable equilibrium. The arrows of motion point toward
the stable equilibrium and away from the unstable one.

1.3.4. Linearizing a Differential Equation

First, linearize ẏ = g(y) in the neighborhood of the steady–state y

g(y) = g(y) + (y − y)g′(y)

where g(y) = 0. The differential equation can be approximated by

ẏ = (y − y)g′(y).

Thus
y(t) = Ceg

′(y)t + y

implies convergence if g′(y) < 0.

Theorem: A steady–state equilibrium point of a nonlinear, first–order differential equa-
tion is stable if the derivative dẏ

dy is negative at that point and unstable if the derivative
is positive at that point.

Example: Consider again ẏ = g(y) = y − y2.

dẏ

dy
= g′(y) = 1− 2y.

At the steady–state value, y = 0,

dẏ

dy

∣∣∣∣
y=0

= g′(0) = 1 > 0

and the equation is unstable.
At the steady–state value, y = 1,

dẏ

dy

∣∣∣∣
y=1

= g′(1) = −1 < 0

and the equation is stable.
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1.3.5. Interpretation

Assume the system is at its steady–state. It is pushed away from the equilibrium point
by an amount dy.
• If dẏ

dy < 0, then the system will move backward and return to the equilibrium point.

• If dẏ
dy > 0, then the system moves further away from equilibrium.

Example:
ẏ = 3y2 − 2y = y(3y − 2)

The steady–state points, ẏ = 0, are

y = 0 or y =
2

3
.

The differential
dẏ

dy
= 6y − 2.

If y = 0, then
dẏ

dy

∣∣∣∣
y=0

= −2 < 0

and the equation is stable.
If y = 2

3 , then
dẏ

dy

∣∣∣∣
y=2/3

= 2 > 0

and the equation is unstable.

Figure I.2: Phase Diagram of a Differential Equation
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1.3.6. The Neoclassical Model of Economic Growth

The production function, Y = F (K,L), exhibits constant returns to scale. Output per
person is

y ≡ Y

L
= F

(
K

L
, 1

)
≡ f(k),

where f(·) is a concave function. The law of motion of the capital stock is

K̇ = sY.

The change in the capital-labor ratio is

k̇ =
d

dt

(
K

L

)
k̇ =

K̇

L
− KL̇

L2

k̇ =
K̇

L
− k L̇

L
.

The labor force grows at the constant rate, L̇
L = n. It follows that

k̇ =
sY

L
− kn

k̇ = sf(k)− kn.

This nonlinear differential equation describes the growth of the economy.
The steady–state points, such that k̇ = 0, that occurs where

sf(k) = kn,

are k = 0 and k∗ > 0.

Furthermore,
dk̇

dk
= sf ′(k)− n

dk̇

dk
= 0⇒ sf ′(k) = n

and this point is k̂. If
d2k̇

dk2
= sf ′′(k) < 0,

then k̇ is maximized at k = k̂.

Phase diagram Steady-states
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1.4. Growth in a Overlapping Generations Economy

The objective is to endogenize the savings rate in the Solow growth model by introducing
a natural heterogeneity across individuals at a point in time. This is an example of an
economy in which the competitive equilibrium may not be Pareto optimal. You can
study the aggregate implications of life–cycle saving by individuals.

1.4.1. The OLG Model

Assumptions:

• Time is discrete (t = 1, 2, . . . )
• Each individual lives for two periods (the simplest case where generations overlap).
• Lt individuals are born in period t

Lt = (1 + n)Lt−1

• At time 1, there is a generation who only lives for one period—the initial old—who
own the initial capital stock.
• At any time, the economy is composed of 2 generations; the young and the old.
• Each individual supplies 1 unit of labor when young.
• Individuals are not productive when old.
• Capital saved in one period is a input in the production process of the following

period.
• There is no depreciation of capital stock.

Households consume part of their first period income and save the rest to finance their
second period retirement consumption. The capital stock is generated by individuals
who save during their working lives. The timing of events is as follows
• 1st period of life: an individual is born, works, consumes, and saves capital.
• 2nd period of life: an individual spends revenue from capital, consumes, and dies.

The constant–relative–risk–aversion utility is

Ut =
C1−θ

1,t

1− θ
+

1

1 + ρ

C1−θ
2,t+1

1− θ
,

where θ > 0, ρ > −1.
• C1,t is consumption in period t of young individuals.
• C2,t+1 is consumption in period t+ 1 of old individuals.

C2,t+1 = (1 + rt+1)(wt − C1,t),

and the lifetime budget constraint is

C1,t +
C2,t+1

1 + rt+1
= wt.

The Lagrangian for the individual’s maximization problem is

max
{C1,t,C2,t+1}

L =
C1−θ

1,t

1− θ
+

1

1 + ρ

C1−θ
2,t+1

1− θ
+ λ

[
wt −

(
C1,t +

C2,t+1

1 + rt+1

)]
.

The first–order conditions are

∂L

∂C1,t
= C−θ1,t − λ = 0
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and
∂L

∂C2,t+1
=

1

1 + ρ
C−θ2,t+1 −

1

1 + rt+1
λ = 0

So
C−θ1,t = λ,

and the Euler equation is

C−θ1,t =
1 + rt+1

1 + ρ
C−θ2,t+1.

You can note that
C1,t

C2,t+1
=

(
1 + rt+1

1 + ρ

) 1
θ

≈ rt+1 − ρ
θ

− 1.

The interpretation of the Euler equation is

C2,t+1 − C1,t

C1,t

“Rate of growth
of consumption”

≈ 1

θ

“Preference for
consumption smoothing”

× (rt+1 − ρ)

“Incentives to
postpone consumption”

From the Euler equation and the budget constraint

C1,t + C1,t
(1 + rt+1)

1
θ
−1

(1 + ρ)
1
θ

= wt

and it follows that
C1,t = [1− s(rt+1)]wt

with

s(r) =
(1 + r)

1
θ
−1

(1 + r)
1
θ
−1 + (1 + ρ)

1
θ

.

• The saving rate, s(r), is increasing in r if and only if (1 + r)
1
θ−1 is increasing in r.

This occurs when θ<1.
• A rise in r has a negative substitution effect on current consumption.
• A rise in r has a positive income effect on current consumption (because the young

agents are lenders of capital).
• If θ is low, then there is a high intertemporal elasticity of substitution and the

substitution effect dominates.
• If θ = 1, then it is the logarithmic case and the substitution effect and the income

effect perfectly offset each other.
The capital stock in period t+ 1 is the amount saved by young individuals in period t

Kt+1 = Lts(rt+1)wt,

where Lt are the young in period t and s is the saving rate. If you divide by Lt+1

kt+1 =
s(rt+1)

(1 + n)
wt.
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There are many firms, each with production function

Yt = F (Kt, Lt).

Markets are competitive, so, labor and capital earn their marginal products

rt = f ′(kt)

wt = f(kt)− ktf ′(kt)

where kt ≡ Kt
Lt

. The initial capital stock K0 is owned equally by all old individuals.

An equilibrium of the OLG model is a triple of sequences, {wt}, {rt}, {kt}, that satisfy

rt = f ′(kt)

wt = f(kt)− ktf ′(kt)

kt+1 =
s(rt+1)

(1 + n)
wt

where k0 is given.

1.4.2. The Steady–State and Dynamics of the OLG Economy

For examination of the dynamics for the capital stock, substitute rt+1 and wt by their
expressions as functions of the capital stock kt

kt+1 =
s[f ′(kt+1)]

(1 + n)
[f(kt)− ktf ′(kt)].

The dynamics depends crucially on the saving rate function.

Next, with logarithmic utility and Cobb–Douglas production, θ = 1, f(k) = kα, and
s(r) = 1

2+ρ , the saving rate is constant and independent of r, then

kt+1 =
(1− α)(kt)

α

(2 + ρ)(1 + n)
.

The steady–state for k is
kt+1 = kt = k∗

k∗ =

[
(1− α)

(2 + ρ)(1 + n)

] 1
1−α

.

The steady–state capital stock is decreasing with ρ and n.

For examination of the speed of convergence, linearize the dynamic system around the
balanced growth path

kt+1 ' k∗ +
dkt+1

dkt

∣∣∣∣
kt=k∗

(kt − k∗).

Then compute
dkt+1

dkt

∣∣∣∣
kt=k∗

=
α(1− α)(k∗)α−1

(2 + ρ)(1 + n)
= α.

The dynamic of the system can be approximated by

kt − k∗ = αt(k0 − k∗).
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The median lag satisfies
k0 − k∗

2
= ατhalf(k0 − k∗).

If α = 1/3, then the median lag satisfies

τhalf =
ln 2

ln 3
.

1.4.3. Dynamic Inefficiency in the OLG Economy

Next, we consider heterogenous agents and the questions of how to measure welfare and
how to asses the efficiency of the equilibrium. A robust criterion is Pareto efficiency. Is
it possible to raise consumption for all agents in all periods? If so, then the economy is
dynamically inefficient. First, a feasible allocation satisfies

LtC1,t + Lt−1C2,t + Lt+1kt+1 = Ltkt + Ltf(kt).

Now divide by Lt to yield

C1,t +
C2,t

1 + n
+ (1 + n)kt+1 = kt + f(kt).

If the economy is in steady state, then

C1 +
C2

1 + n
= f(k)− nk.

Definition: The golden–rule level of capital stock is where aggregate steady–state con-
sumption is maximized.

Here, that is when
f ′(k) = n.

If the steady–state equilibrium capital stock is larger than kGR, then the economy is
dynamically inefficient. That is, agents can “eat” the capital stock above kGR and still
increase aggregate consumption in subsequent periods. Consider a social planner and
assume that k∗ > kGR. If the social planner does not change the capital stock, then
the output available for consumption is f(k∗) − nk∗. The social planner can increase
consumption in the current period and maintain the golden–rule level for the capital
stock in subsequent periods. Consumption in the initial period is

f(k∗)− nkGR + (k∗ − kGR),

and consumption in subsequent periods is

f(kGR)− nkGR.

The steady–state equilibrium capital stock is given by

k∗ =

[
(1− α)

(2 + ρ)(1 + n)

] 1
1−α

.

The marginal product of capital is

f ′(k∗) = αk∗α−1 =
α(2 + ρ)(1 + n)

(1− α)
,

which may be greater than or less than f ′(kGR) = n. For sufficiently small α, then
f ′(k∗) < f ′(kGR). Equivalently, if the saving rate, s = 1

2+ρ , is too large, then the
steady–state capital stock exceeds the golden–rule level and the equilibrium is Pareto
inefficient.
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1.4.4. The Samuelson Paradox

Note that the 1st Welfare Theorem states that competitive equilibria are always efficient.
So, why does the 1st Welfare Theorem fail to hold in the OLG model? This is because
the 1st Welfare Theorem assumes that there are no externalities, competitive markets,
and no missing markets. In an economy with births and deaths, all agents cannot meet
in a single market. A infinite number of dated commodities and a infinite number of
agents, that is two infinite quantities, explains the Samuelson paradox.

Proof. Given infinite goods, g, and households, h, let {pg} be the competitive prices and
{chg} be the competitive allocation. The proof of the 1st Welfare Theorem is sketched out
as follows. Let {c′hg} be an allocation that Pareto–dominates the competitive allocation.
It follows that ∑

g

pg(c
′
hg − chg) ≥ 0,

for every h, with strict inequality for some h. Adding over over households yields∑
h

∑
g

pg(c
′
hg − chg) > 0.

Interchanging the summations yields∑
g

pg
∑
h

(c′hg − chg) > 0,

which implies ∑
h

(c′hg − chg) > 0,

for some good g. This violates feasibility; people are consuming more than their com-
bined endowment of good g. However, this proof cannot be used in OLG models, because
the sets of goods and agents are infinite. The proof of the 1st Welfare Theorem requires
the double summation to be finite. Thus, the 1st Welfare Theorem does not hold in
OLG economies. �

Example: Assume that there is no production, the endowment of the young is e1 = 1,
the endowment of the old e0 = 0, and agents have linear utility

Ut = C1,t + C2,t+1.

The competitive equilibria are such that

(C1,t, C2,t+1) = (1, 0).

An allocation that generates a Pareto–improvement is

(C1,t, C2,t+1) = (0, 1),

because the old at time 1 are strictly better–off whereas the following generations are
indifferent. Note that this is because generations are infinite, the young will always give
their endowment to the old and receive an endowment when they are old. Everyone
is just as well off, but the first generation of old is strictly better–off because they can
consume an endowment.
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1.4.5. Impure Altruism in the OLG Economy

So far, agents do not care about the utility of future generations. However, altruism
might be empirically relevant, so, it is important to explain bequests. Perhaps, parents
have warm glow preferences and derive utility from their bequests. We will examine how
such altruism affects the dynamics of the OLG economy.

Assume that there are a continuum of individuals with measure normalized to 1 and
that the population is constant at 1. Each individual lives for 2 periods; childhood and
adulthood. In adulthood, the second period, each individual receives one child and an
endowment of 1 unit of labor. Capital fully depreciates after use. Agents do not enjoy
consumption in childhood, the first period. The preferences of agent i at time t are

Ui(t, c, b) = log[ci(t)] + β log[bi(t)],

where ci(t) is consumption when an adult and bi(t) is a bequest to the individual’s
offspring. The maximization problem is

max
ci(t),bi(t)

log[ci(t)] + β log[bi(t)]

s. t. ci(t) + bi(t) = w(t) +R(t)bi(t− 1),

where R(t) is the rental price of capital and w(t) is the real wage rate. Assuming
competitve prices

R(t) = f ′[k(t)]

w(t) = f [k(t)]− k(t)f ′[k(t)].

The solution to this problem is

ci(t) =
yi(t)

1 + β

bi(t) =
βyi(t)

1 + β
.

The result is a distribution of wealth that evolves endogenously over time. The capital–
labor ratio at time t+ 1 is given by aggregating the bequests of all adults at time t

k(t+ 1) =

∫ 1

0
bi(t) di

k(t+ 1) =

∫ 1

0

β

1 + β
[w(t) +R(t)bi(t− 1)] di

k(t+ 1) =
β

1 + β
[w(t) +R(t)k(t)]

k(t+ 1) =
β

1 + β
f [k(t)].

This equation represents the aggregate equilibrium dynamics, and it is similar to the
baseline Solow growth model. There is a unique positive steady–state, where capital
stock increases with β,

k∗ =
β

1 + β
f(k∗).
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At the steady–state, individual bequest dynamics are given by

bi(t) =
β

1 + β
[w∗ +R∗bi(t− 1)],

and it can be checked that R∗β
1+β < 1. Thus, the distribution of bequests converges to full

equality

bi(t)→ b∗ =
βw∗

1 + β(1−R∗)
.
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1.5. Fiat Money in the Overlapping Generations Economy

Definition: Fiat money is inconvertible, there is no promise it can be converted into
anything else, and it is intrinsically useless, it cannot be used in the utility function nor
in the production function.

Thus, fiat money is an efficient form of money; it can be produced at no cost. The Hahn
problem is the question of how can an intrinsically useless object can have a positive
value in exchange? This is a puzzle in monetary theory. The OLG model offers a “deep”
model of money that can offer help to solve this puzzle by adding an inter-generational
friction to motivate a meaningful role for money.

1.5.1. The OLG Barter Economy

First, look at the OLG barter economy.

Assumptions:

• Time is discrete; t = 0, 1, 2, . . .
• There are Lt individuals are born at time t

Lt = (1 + n)t.

• Individuals live for 2 periods.
• All agents have perfect foresight.
• Each agent is endowed with 1 unit of good when young.
• The good can be exchanged, consumed, or stored.
• Each unit saved at time t yields 1+r units at time t+1 (storage technology).
• The lifetime utility function of an individual born at time t is

u(cy,t, co,t+1) = ln(cy,t) + β ln(co,t+1),

where cy,t is consumption when young and co,t+1 is consumption when old.

Let {(cy,t, co,t), t = 0, 1, 2, . . . } be an allocation of the consumption of the young and old
agents in each period. When good are perishable, r = −1, feasible allocations satisfy

Ltcy,t + Lt−1co,t ≤ Lt

cy,t +
co,t

1 + n
≤ 1,

for all t. If agents face a similar budget constraint, then their program is

max
cy,t,co,t+1

ln(cy,t) + β ln(co,t+1)

s. t. cy,t +
co,t+1

1 + n
= 1.

The solution (Euler equation) for the maximization problem is

co,t+1

cy,t
= β(1 + n).

From the budget constraint, you can find that

cy,t =
1

1 + β

co,t+1 =
β(1 + n)

1 + β
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Even though the allocation {( 1
1+β ,

β(1+n)
1+β )} is feasible, it is not attainable through bilat-

eral trade. The young would like to exchange goods in this period against goods in the
next period with the future young, but they can only trade with the current old. There-
fore, no trade can take place and the decentralized outcome is cy,t = 1 and co,t+1 = 0.
The decentralized equilibrium is not Pareto optimal and is therefore dynamically ineffi-
cient. If the young agents each transfer β

1+β to the old generation and if each old agent

receives β(1+n)
1+β , then there is a Pareto improvement and everyone is strictly better-off.

1.5.2. The OLG Monetary Economy

At time 0, the government gives to the old H divisible units of a fiat object called money.
Suppose that at time t the price of goods in terms of this fiat object is Pt. Money is
valued Pt < +∞ or 1

Pt
> 0. The maximization problem of the agent is then

max
cy,t,co,t+1

ln(cy,t) + β ln(co,t+1)

s. t. Ptcy,t +md
t = Pt

Pt+1co,t+1 = md
t ,

where md
t is the household’s money balance. Let zt be the real money balances

zt =
md
t

Pt
.

The constraints become

cy,t = 1− zt
co,t+1 = Pt

Pt+1
zt,

and the program can be rewritten

max
zt

ln(1− zt) + β ln

(
Pt
Pt+1

zt

)
,

with first order condition
1

1− zt
=
β

zt
.

The solution to this program is

cy,t =
1

1 + β

zt =
β

1 + β

co,t+1 =
Pt
Pt+1

(
β

1 + β

)
.

The equilibrium of the money market is

LtPt

(
β

1 + β

)
= H,
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where LtPt(
β

1+β ) is the demand for money and the H is the money supply. It follows
that there is deflation (i.e. Pt > Pt+1) at the rate n

LtPt
Lt+1Pt+1

= 1

Pt
Pt+1

= 1 + n.

The allocation at the steady–state monetary equilibrium is

cy,t =
1

1 + β

co,t+1 = (1 + n)
β

1 + β
.

Thus, the introduction of money leads to a Pareto optimal allocation of resources across
generations.

The assumption that the economy goes on forever is a necessary condition for money to
be valued. If the economy ended at time T , the young at time T would not want to buy
money. Proceeding backward, no one would ever want to buy money. Furthermore, even
if a monetary equilibrium exists, there is also a barter equilibrium where fiat money is
not valued. An implication of the incovertibility and intrinsic uselessness of fiat money
is that equilibria in which fiat money is valued are tenuous.

1.5.3. The Role of Money in the OLG Economy

Now, suppose that there is fiat money in an economy with storage (i.e. r > −1). The
amount of goods that is stored is kt. The program of the agent is

max
cy,t,co,t+1

ln(cy,t) + β ln(co,t+1)

s. t. cy,t = 1− kt − zt

co,t+1 = (1 + r)kt +
Pt
Pt+1

zt

The program can be rewritten as

max
kt,zt

ln(1− kt − zt) + β ln

(
(1 + r)kt +

Pt
Pt+1

zt

)
,

with first order conditions

− 1

cy,t
+ β

(1 + r)

co,t+1

{
≤ 0

= 0 if kt > 0.

− 1

cy,t
+ β

Pt/Pt+1

co,t+1

{
≤ 0

= 0 if zt > 0.

From the Inada conditions, co,t+1 > 0, which implies kt > 0 or zt =
mdt
Pt

> 0. From the
FOC,

If
Pt
Pt+1

< 1 + r, then kt > 0 and
md
t

Pt
= 0

If
Pt
Pt+1

> 1 + r, then kt = 0 and
md
t

Pt
> 0.

i - 25



If agents are willing to hold money, then

Pt
Pt+1

= 1 + n.

The result is as follows.
• If r < n then money can be valued and has a rate of return equal to n. The

monetary economy achieves a Pareto optimum and storage is not used.
• If r > n, then the barter equilibrium is a Pareto optimum. There cannot be a

monetary equilibrium with a constant money stock.
In conclusion, there can be a monetary equilibrium only if the barter equilibrium is not
a Pareto optimum. In this case, there is a monetary equilibrium that is Pareto optimal.
That is, if the economy is dynamically inefficient (i.e. r < n), then the introduction of
money can make everybody better–off. Furthermore, money is valued only when it is
not dominated in rate of return by any other asset.

1.5.4. Money and Inflation in the OLG Economy

Next, assume that the nominal money stock grows at rate σ

Ht+1 = (1 + σ)Ht.

New money is introduced through lump–sum transfers to the old. Let Tt be the amount
of the monetary transfer received by the old at time t. The program of an agent is

max
cy,t,co,t+1

ln(cy,t) + β ln(co,t+1)

s. t. cy,t = 1− kt − zt

co,t+1 = (1 + r)kt +
Pt
Pt+1

zt +
Tt+1

Pt+1
.

The equilibrium condition in the money market is

Ltm
d
t = Ht,

or in real money balances it is

Ltzt =
Ht

Pt
.

In a steady–state, per–capita real balances are constant

Ht

LtPt
=

Ht+1

Lt+1Pt+1
.

This implies that
Pt+1

Pt
=
LtHt+1

Lt+1Ht
=

1 + σ

1 + n

where
1 + σ

1 + n
' 1 + σ − n.

The rate of return of money is

Pt
Pt+1

− 1 =
1 + n

1 + σ
− 1 ' n− σ.
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Assume that 1+n
1+σ > 1 + r. This implies that agents prefer to hold money rather than to

store goods. Let zt be the demand for real balances. The program of the agent is then

max
zt

ln(1− zt) + β ln

(
Pt
Pt+1

zt +
Tt+1

Pt+1

)
,

with first order condition
1

1− zt
=

β

zt + Tt+1

Pt

.

The additional money is used to finance the transfer to the old

Tt+1 =
σHt

Lt
= σmd

t ,

or in real money balances
Tt+1

Pt
= σzt.

It can then be deduced that

cy,t =
1 + σ

1 + β + σ

zt =
β

1 + β + σ

co,t+1 = (1 + n)
β

1 + β + σ
.

In conclusion, when real money balances are constant, then the price level is proportional
to the money supply, that is, money is neutral. Money does affect the allocation of
resources, that is, money is not superneutral. The monetary equilibrium with inflation
is no longer a Pareto optimum. If 1+n

1+σ < 1 + r, then there is no monetary equilibrium
(i.e. the storage technology outperforms money as a store of value). Also, note that
money growth cannot be too large, otherwise the economy resorts to a barter economy.

1.5.5. Dynamics of the OLG Economy

Assume that goods are perishable (i.e. r = −1), the endowments are 1 when young and
α < 1 when old, and that the population is constant, Lt = 1 and H = 1. Consider the
following utility function with no discounting

u(cy,t, co,t+1) =
(cy,t)

1−γ1

1− γ1
+

(co,t+1)1−γ2

1− γ2
,

where there are different coefficients for RRA across consumption, γ1, γ2 > 0. The
program of the agent is

max
cy,t,co,t+1

(cy,t)
1−γ1

1− γ1
+

(co,t+1)1−γ2

1− γ2

s. t. cy,t + zt = 1

co,t+1 =
Pt
Pt+1

zt + α.

The FOC implies that
(co,t+1)γ2

(cy,t)γ1
=

Pt
Pt+1

.
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By definition

zt+1 = zt
Pt
Pt+1

,

so, the budget constraints of the agent born at time t are

zt = 1− cy,t
α+ zt+1 = co,t+1

As a consequence

zt+1 = zt
(α+ zt+1)γ2

(1− zt)γ1
,

and it follows that
zt

(1− zt)γ1
=

zt+1

(α+ zt+1)γ2
.

This represents a phase line. The left–hand side is increasing in zt, and the right–hand

side, (α(z
−1/γ2

t+1 + (zt+1)1−1/γ2)−γ2 , is increasing in zt + 1 if γ < 1. Otherwise, if γ2 > 1,
then the right–hand side is non-monotonic and the phase line may be backward bending.

1 20.5,   0.8α γ γ= = =
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1tz +
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The steady–states of this first–order difference equation are z = 0 or z such that

(α+ z)γ2 = (1− z)γ1 ,

where α < 1 is required for a steady–state monetary equilibrium to exist.

When α = 0.5 and γ1 = γ2 = 0.8, then there are two steady stats; z = 0 and z = 0.25.
The monetary equilibrium is unstable. Paths that start to the right transition such
that z increases and becomes larger than the initial endowment, 1, which is impossible.
Path starting to the left transition such that z decreases asymptotically to 0. If you
impose that the price level will not explode, then the monetary equilibrium is unique
and the price level is uniquely determined. The monetary equilibrium will be locally
stable. The economy converges to the monetary steady–state starting from any z in the
neighborhood of z. This implies that there are a multiplicity of convergent solutions,
which in turn implies that the price level is indeterminate.

The reasons why the phase line can be backward bending are that the supply of goods
when young depends on the rate of return of money, and if Pt

Pt+1
increases then there

are two affects; a substitution effect, agents want to save more, and an income effect,
agents want to consume more. The substitution effect may dominate for low values of
Pt
Pt+1

whereas the income effect may dominate for large values of Pt
Pt+1

.
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In order to find a cyclical solution, let the phase line by given by

zt+1 = ψ(zt).

A 2–periods cycle is
z2 = ψ(z1) and z1 = ψ(z2).

In order to find such a solution, you can draw the mirror image of the phase line,
zt = ψ(zt+1), and check if it intersects the original phase line.

Two-periods cycles
1 20.5,   0.5,    6α γ γ= = =

0
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1

y
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1.6. Introduction to Optimal Control Theory

1.6.1. A Simple Optimal Control Problem

There is one good and one agent (or social planner). The good can be either consumed
or used as capital. The agent maximizes her lifetime discounted utility over the time
horizon [0, T ]. At time 0, there are k0 > 0 units of capital. The terminal condition is
that k(T ) = kT . The production function is

y = f(k)

where f ′ > 0, f ′′ < 0, f ′(0) = +∞, and f ′(+∞) = 0. Capital depreciates at rate δ > 0.
The law of motion for the capital stock is then

k̇ = f(k)− c− δk.

The utility of the agent is

U({c(t)}) =

∫ T

0
e−ρtu[c(t)] dt,

where ρ > 0. u(·) is increasing and strictly concave; u′ > 0, u′′ < 0, u′(0) = +∞, and
u′(+∞) = 0.

Definition: A state variable determines the position of the (economic) system at each
point of time.

In this context, k is a state variable; {k(t), t ∈ [0, T ]} gives the trajectory of the system.

Definition: A control varialbe is the choice variable of the agent and affects her current
utility and the path of the state variable(s).

In this context, c is a control variable.

The {c(t), t ∈ [0, T ]}, initial condition k(0) = k0, and the ordinary differential equation
(ODE) for k define a unique trajectory for the system. A pair of functions, c(t) and
k(t), that satisfy the law of motion for capital, the initial and terminal conditions, and
non–negativity constraints is an admissible pair of functions.

The program of the agent is

max
{c(t),k(t)}

U({c(t)}) =

∫ T

0
e−ρtu[c(t)] dt

s. t. k̇ = f(k)− c− δk, k(0) = k0, and k(T ) = kT .

1.6.2. Discrete Time Optimal Control

Consider first a finite dimensional problem; a discrete problem where the number of
control variables is finite. Divide the interval interval of time [0, T ] into N periods. The
length of each period is ∆ ≡ T

N . The Agent’s utility can be rewritten as

U({c(t)}) =

N−1∑
τ=0

∫ (τ+1)∆

τ∆
e−ρtu[c(t)] dt.

At time τ∆, with τ ∈ {0, 1, . . . , N−1}, the agent chooses cτ∆ given their utility over
[τ∆, (τ + 1)∆)

U({c(t)}) =

∫ (τ+1)∆

τ∆
e−ρtu[cτ∆] dt = u[cτ∆]e−ρτ∆ 1− e−ρ∆

ρ
.
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If ∆ ≈ 0, then e−ρ∆ ≈ 1− ρ∆ and∫ (τ+1)∆

τ∆
e−ρtu[cτ∆] dt ≈ e−ρτ∆u[cτ∆]∆.

Capital accumulation, over [τ∆, (τ + 1)∆], follows the law of motion for k

k(τ+1)∆ − kτ∆ =

∫ (τ+1)∆

τ∆
[f(kt)− ct − δkt] dt.

If ∆ is small, the production flow can be approximated by∫ (τ+1)∆

τ∆
f(kt) dt ≈ f [kτ∆]∆.

Depreciation of capital is approximated by∫ (τ+1)∆

τ∆
δkt dt ≈ kτ∆δ∆.

Therefore, the law of motion of k can be rewritten as

k(τ+1)∆ = kτ∆ + f(kτ∆)∆− cτ∆ − δ∆kτ∆.

The agent’s problem can be rewritten as

max
{cτ∆,k(τ+1)∆}

U({c(t)}) =

N−1∑
τ=0

e−ρ∆τu(cτ∆)∆

s. t. k(τ+1)∆ = kτ∆ + f(kτ∆)− cτ∆ − δ∆kτ∆, k(0) = k0, and k(T ) = kT .

Example: A Two–Period Optimal Control Problem
Suppose N = 2 and ∆ = 1. The program is

max
{c0,c1}

{u(c0) + e−ρu(c1)}

s. t. k1 = k0 + f(k0)− c0 − δk0

k2 = k1 + f(k1)− c1 − δk1

To solve, substitute c1 and c0 by their expressions given by the budget constraints. Now,
the problem is

max
{k1,k2}

{u[k0 + f(k0)− δk0 − k1] + e−ρu[k1 + f(k1)− δk1 − k2]}.

If k2 is free, then k2 = 0. Otherwise, k2 is the terminal value. The first–order condition
with respect to k1 yields the Euler equation

u′(c0) = [1 + f ′(k1)− δ]e−ρu′(c1).

Example: A N-Period Optimal Control Problem
Let µτ∆ be the Lagrange multiplier associated with the law of motion k. Its economic
interpretation is the shadow price of capital at time τ∆. The Lagrangian is

L =

N−1∑
τ=0

{
e−ρ∆τu(cτ∆)∆ + µτ∆

[
kτ∆ + f(kτ∆)∆− cτ∆∆− δ∆kτ∆ − k(τ+1)∆

]}
.
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Let λτ∆ ≡ eρ∆τµτ∆ denote the current–value multiplier; the Lagrangian can be rewritten

L =
N−1∑
τ=0

e−ρ∆τ

{
u(cτ∆)∆ + λτ∆

[
kτ∆ + f(kτ∆)∆− cτ∆∆− δ∆kτ∆ − k(τ+1)∆

]}
.

The first–order conditions with respect to cτ∆ are

u′(cτ∆) = λτ∆ for all τ = 0, . . . , N − 1.

The first–order conditions with respect to kτ∆ are

λ(τ−1)∆eρ∆ = λτ∆ + λτ∆[f ′(kτ∆)∆− δ∆] for all τ = 1, . . . , N.

Definition: The Hamiltonian function is defined as

H(cτ∆, kτ∆, λτ∆) = u(cτ∆) + λτ∆[f(kτ∆)− cτ∆ − δkτ∆]

Definition: The multiplier of the Hamiltonian function is called a costate variable.

The first–order conditions with respect to cτ∆ are

∂H

∂cτ∆
= 0 for all τ = 0, . . . , N − 1.

The shadow price of capital obeys

λ(τ−1)∆ = e−ρ∆

(
∂H

∂kτ∆
∆ + λτ∆

)
,

and the equation for the costate variable can be rewritten as(
eρ∆ − 1

∆

)
λ(τ−1)∆ =

∂H

∂kτ∆
+

(
λτ∆ − λ(τ−1)∆

∆

)
.

The solution is a system of two first–order difference equations. From the first first–order
condition, you can express c as a function of λ. Therefore, there are two unknowns; the
state variable k and the costate variable λ. An initial condition, k(0) = k0, and a
terminal condition, k(T ) = kT , are needed to pin down the trajectory of the system.

1.6.3. Continuous Time Optimal Control

For continuous time, take the limit as N goes to infinity (i.e. ∆ → 0). Let ∆ go to 0
while τ goes to infinity such as to maintain τ∆ equal to t. The conditions

∂H(c(t), k(t), λ(t))

∂c(t)
= 0 for all t ∈ [0, T ]

and k(T ) = kt remain unchanged. The difference equation for λ is a differential equation

lim
∆→0

eρ∆ − 1

∆
= ρ

lim
∆→0

λ(t)− λ(t−∆)

∆
= λ′(t).

The equation for the costate variable becomes

ρλ =
∂H

∂k
+
∂λ

∂t
.
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The candidates for an optimum satisfy the two first–order differential equations above.

It is assumed that the end–point is chosen freely by the agent. The boundary condition
must hold

λ(T )k(T ) = 0.

• If k(T ) > 0, then the price of the state variable must be zero, λ(T ) = 0, that is,
the capital stock should be used until its marginal contribution is 0 at T .
• If λ(T ) > 0, then k(T ) = 0, that is, if capital is valuable, then the agent will die

with no capital stock.

1.6.4. The Maximum Principle

Theorem: The Maximum Principle
The Maximum Principle states that an optimal solution to

max
{c(t),k(t)}

U({c(t)}) =

∫ T

0
e−ρtu[c(t)] dt

s. t. k̇ = f(k)− c− δk, k(0) = k0, and k(T ) = kT .

is a triplet {c(t), k(t), λ(t)} that must satisfy the following conditions.

• There is optimal control, c(t) maximizes H
(
c(t), k(t), λ(t)

)
for any t ∈ [0, T ].

• The costate variable obeys the differential equation

ρλ =
∂H

∂k
+
∂λ

∂t
.

• The terminal condition, k(T ) = kT or λ(T )k(T ) = 0 if the end–point is free, holds.

1.6.5. Sufficient Conditions for Optimal Control

The Maximum Principle only give the necessary conditions for an optimum. The first–
order conditions may yield a local maximum, a minimum, or neither (i.e. a saddle–point).
Some additional requirements are needed to isolate the trajectory(ies) that maximizes
the welfare criterion.

Assumption: Assume that the Hamiltonian, H(c, k, λ∗), is jointly concave in (c, k)
where λ∗ is generated by the Maximum Principle. The necessary conditions given by
the Maximum Principle are sufficient conditions for a maximum. For the problem above,
the Hamiltonian is

H(c, k, λ∗) = u(c) + λ∗[f(k)− c− δk],

where λ∗ ≥ 0. Thus, both the utility function and the production function must be
strictly concave.

Proof. Consider a candidate solution {c∗(t), k∗(t), λ∗(t)} that satisfies the first–order
conditions. Now consider another admissible path {c(t), k(t)}. Denote k∗(t) the trajec-
tory under c∗(t) and k(t) if c(t). Let ∆ be defined as

∆ =

∫ T

0
e−ρtu[c∗(t)] dt−

∫ T

o
e−ρtu[c(t)] dt.

Note that
u(c) = H(c, k, λ∗)− λ∗k̇.
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Substitute u(c) by its expression given by H to get

∆ =

∫ T

0
e−ρt[H(c∗, k∗, λ∗)−H(c, k, λ∗)] dt−

∫ T

0
e−ρtλ∗[k̇∗ − k̇] dt.

Use the concavity of the Hamiltonian function in (c, k) to find

H(c, k, λ∗) ≤ H(c∗, k∗, λ∗) +Hc(c
∗, k∗, λ∗)(c− c∗) +Hk(c

∗, k∗, λ∗)(k − k∗),

where Hc and Hk are the partial derivatives of the Hamiltonian with respect to c and k
respectively. From the first order conditions

Hc(c
∗, k∗, λ∗) = 0

Hk(c
∗, k∗, λ∗) = ρλ∗ − λ̇∗

you can obtain the following inequality

∆ ≥
∫ T

0
e−ρt[ρλ∗ − λ̇∗](k∗ − k) dt−

∫ T

0
e−ρtλ∗[k̇∗ − k̇] dt

∆ ≥
∫ T

0

d[−e−ρtλ∗(k∗ − k)]

dt
dt

∆ ≥ λ∗(0)[k∗(0)− k(0)]− e−ρTλ∗(T )[k∗(T )− k(T )].

Note that k∗(0) = k(0) = k0 and k∗(T ) = k(T ) = kt. Consequently,

∆ ≥ 0.

This inequality is strict if the Hamiltonian is strictly concave in (c, k). �

Theorem: The Mangasarian Sufficiency Theorem
If (c∗(t), k∗(t)) is a solution of the conditions provided by the Maximum Principle and if
H(c, k, λ∗) is concave in (c, k) with the costate variable, λ∗, supplied by the maximum
principle, then (c∗(t), k∗(t)) solves the optimal control problem. If H(c, k, λ∗) is strictly
concave in (c, k), then (c∗(t), k∗(t)) is the unique solution to the problem.

1.6.6. Economic Interpretation of Optimal Control

The Hamiltonian of an agent is

H(c, k, λ) = u(c) + λk̇.

If the agent decides to modify her control variable, c, there are two consequences.
• First, the choice modifies the current utility of the agent.
• Second, the choice will affect the state variable, k, in future periods.

The question is, how to value this effect on k̇? You can use a shadow price, λ, analogous
to the Lagrange multiplier. The consequences of the current choice for the future are
summarized by λk̇. The first first–order condition for the Hamiltonian is

∂H(c, k, λ∗)

∂c
= 0

and as in a static problem, the agent chooses the control to maximize the objective. The
second first–order condition for the Hamiltonian is

ρλ =
∂H

∂k
+
∂λ

∂t

and is like an asset–pricing equation. The left–hand side, ρλ, can be interpreted as an
opportunity cost. The first term on the right–hand side, ∂H∂k , is the dividend of the asset.

The last term on the right–hand side, ∂λ
∂t is the capital gain or loss.
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1.6.7. Costate Variables

The utility of the agent when the optimal control has been chosen is

U∗ =

∫ T

0
u(c∗)e−ρt dt.

For any function, λ, you have

λ[f(k∗)− c∗ − δk∗] = λk̇∗.

Consequently,

U∗ =

∫ T

0
e−ρt{u(c∗) + λ[f(k∗)− c∗ − δk∗]− λk̇∗} dt.

Integration by parts yields∫ T

0
e−ρtλk∗ dt = [e−ρtλk∗]T0 −

∫ T

0
e−ρt(−ρλ+ λ̇)k∗ dt∫ T

0
e−ρtλk∗ dt = e−ρTλ(T )k∗(T )− λ(0)k∗(0)−

∫ T

0
e−ρt(−ρλ+ λ̇)k∗ dt.

Substitute into the equation for U∗ to obtain

U∗ =

∫ T

0
e−ρt{H(c∗, k∗, λ) + (−ρλ+ λ̇)k∗} dt+ λ(0)k∗(0)− e−ρTλ(T )k∗(T )

Differentiate with respect to k(0) to obtain

∂U∗

∂k0
=

∫ T

0
e−ρt

{
Hc(c

∗, k∗, λ)
∂c∗

∂k0
+[Hk(c

∗, k∗, λ)−ρλ+λ̇]
∂k∗

∂k0

}
dt+λ(0)−e−ρTλ(T )

∂k∗(T )

∂k0
.

Note that the shadow price, λ, is an arbitrary function of time. A change in the initial
condition, k(0), does not affect the costate variable, λ, or its derivative. Furthermore,
∂k∗(T )
∂k0

= 0, because the terminal point is exogenously specified. Suppose that you select
the optimal path λ∗(t) from the Maximum Principle. Then

∂U∗

∂k0
− λ∗(0).

Note that λ∗(0) measures the impact of a change in the initial capital stock on the utility
of the agent. The effect of a change in kT on the agent’s utility is

∂U∗

∂kT
= −e−ρTλ∗(T ).

1.6.8. Infinite Time Horizon Optimal Control

When the time horizon is infinite, the method is similar. The Hamiltonian is

H(c, k, λ) = u(c) + λ[f(k)− c− δk].

The optimal control satisfies
∂H

∂c
= 0.
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The dynamic equation for the costate variable satisfies

ρλ =
∂H

∂k
+ λ̇.

There is an initial condition k(0) = k0. However, there is no terminal value for the
capital stock. Instead, there is a transversality condition.

Definition: The Transversality Condition
Assume that H(c, k, λ) is jointly concave in c and k. Let c∗ and k∗ be the optimal paths
for consumption and the capital stock, and let λ∗ be the associated costate variable.
Consider another path, c and k, that satisfies

k̇ = f(k)− c− δk
k(0) = k0.

The path (c∗, k∗) is an optimum if and only if

∆ =

∫ +∞

0
e−ρtu[c∗(t) dt−

∫ +∞

0
e−ρtu[c(t)] dt ≥ 0.

Note that

u(c∗) = H(c∗, k∗, λ∗)− λ∗∂k
∗

∂t

u(c) = H(c, k, λ∗)− λ∗∂k
∂t

From the concavity of the Hamiltonian, you have

H(c∗, k∗, λ∗)−H(c, k, λ∗) ≥ Hk(c
∗, k∗, λ∗)(k∗ − k) +Hc(c

∗, k∗, λ∗)(c∗ − c).

From the first–order conditions

Hc(c
∗, k∗, λ∗)(c∗ − c) = 0

Hk(c
∗, k∗, λ∗)(k∗ − k) = (ρλ∗ − λ̇∗)(k∗ − k)

It follows that∫ +∞

0
e−ρt[u[c∗(t)]−u[c(t)]] dt ≥

∫ +∞

0
e−ρt(ρλ∗−λ̇∗)(k∗−k) dt−

∫ +∞

0
e−ρtλ∗

(
∂k∗

∂t
−∂k
∂t

)
dt

≥
∫ +∞

o
− d

dt
[e−ρtλ∗(k∗ − k)] dt

≥ lim
t→∞

e−ρtλ∗(k − k∗).

A sufficient condition for (c∗, k∗) to be a maximum is that

lim
t→∞

e−ρtλ∗(k − k∗) ≥ 0 for all k.

In this problem, the shadow price of capital will always be positive and the capital stock
cannot be negative. Consequently, a sufficient condition for an optimum is that

lim
t→∞

e−ρtλ∗k∗ = 0

Theorem: The Mangasarian Sufficiency Theorem
Let (c∗, k∗, λ∗) be a triplet generated by the Maximum Principle. If H(c, k, λ∗) is jointly
concave in k and c, and if limt→∞e−ρtλ∗(k − k∗) ≥ 0 for all possible paths, k(t), then
(c∗, k∗) is optimal.
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1.6.9. Generalization of the Optimal Control Problem

For a more general problem, x(t) is the state variable and y(t) is the control variable.
The optimal control problem is

max
{x(t),y(t)}

∫ ∞
0

u[t, x(t), y(t)] dt

subject to
ẋ(t) = g[t, x(t), y(t)],

an initial condition, x(t) = x0, and limt→∞ b(t)x(t) ≥ x1 with limt→∞ b(t) <∞.

In the previous example, x(t) = k(t), y(t) = c(t), u(t, x, y) = e−ρtu(c), and g(t, x, y) =
f(x)−δx−y. However, with an infinite horizon, then limt→∞ b(t)x(t) ≥ x1 is a terminal
value constraint. In many applications, b(t) = 1.

Definition: Value Function
The optimal value of the dynamic maximization problem starting at time t0 with state
variable x(t0) is given by the value function

V [t0, x(t0)] = max
{x(t),y(t)}

∫ ∞
t0

u[t, x(t), y(t)] dt

s. t. ẋ(t) = g[t, x(t), y(t)], x(t) = x0, and lim
t→∞

b(t)x(t) ≥ x1.

Theorem: The Principle of Optimality
Suppose that (x∗(t), y∗(t)) is a solution to the dynamic optimization problem. Then

V [t0, x(t0)] =

∫ t1

t0

u[t, x∗(t), y∗(t)] dt+ V [t1, x
∗(t1)],

for all t1 ≥ t0.

Proof. Assuming that (x∗(t), y∗(t)) is a solution to the optimization problem implies

V [t0, x(t0)] =

∫ ∞
t0

u[t, x∗(t), y∗(t)] dt

V [t0, x(t0)] =

∫ t1

t0

u[t, x∗(t), y∗(t)] dt+

∫ ∞
t1

u[t, x∗(t), y∗(t)] dt.

By definition of the value function

V [t1, x
∗(t1)] ≥

∫ ∞
t1

u[t, x∗(t), y∗(t)] dt.

Thus, it is clear that the inequality cannot be strict, otherwise there would be a profitable
deviation after t1. �

Theorem: The Infinite–Horizon Maximum Principle
Suppose that the dynamic maximization problem has a solution (x∗(t), y∗(t)). Define
the present value Hamiltonian as

H(t, x, y, λ) = u(t, x, y) + λg(t, x, y).

Then

y∗(t) ∈ arg max
{y}

H[t, x∗(t), y, λ(t)] for all t.

λ̇(t) = −Hx[t, x∗(t), y∗(t), λ(t)].
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Example: Optimal Growth
The Hamiltonian is

H(t, k, c, λ) = e−ρtu(c) + λ[f(k)− δk − c].

The maximization of H with respect to c yields

u′(c(t)) = eρtλ(t).

The differential equation for the costate variable is

λ̇(t) = −λ(t)[f ′(k)− δ].

Denote µ(t) ≡ eρtλ(t). Then,

ρµ(t) = µ(t)[f ′ − δ] + µ̇(t).
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1.7. The Ramsey Model of Optimal Growth

This section will introduce you to a growth model from Ramsey 1928. The question is,
how much should a nation save? A framework for studying the optimal intertemporal
allocation of resources is introduced. The model begins with microfoundations, wherein
the optimizing behavior of agents is explicit, and the result is that the saving rate is
endogenous.

1.7.1. The Ramsey Model

Assumptions:

• There is a household composed of L agents who have to decide how much to
consume and how much to save (invest).
• Output is produced according to a Neoclassical production function

Y = F (K,L).

• There is initial capital, k0.
• Capital depreciates at rate δ.

For simplicity, you can normalize L to 1, and work in per capita terms. Let

f(k) ≡ F (k, 1).

The function f(·) is strictly concave and satisfies the Inada conditions;

f(0) = 0, f ′(0) =∞, f ′(∞) = 0.

The household’s utility function is

U =

∫ +∞

0
e−ρtu

(
c(t)
)

dt,

where ρ is the rate of time preference. The instantaneous utility function is

u(c) =
c1−θ

1− θ
, where θ > 0

and
u(c) = ln c if θ = 1.

Definition: The Coefficient of Relative Risk Aversion

RRA ≡ −cu
′′(c)

u′(c)
= θ.

Definition: The Intertemporal Elasticity of Substitution

η =
1

θ
.

Proof. The utility can be rewritten

U = u[c(t)] + e−ρ(s−t)u[c(s)].

Thus the marginal rate of substitution is

−dc(t)

dc(s)

∣∣∣∣
U=cste

=
u′[c(s)]e−ρ(s−t)

u′[c(t)]
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MRS =

(
c(t)

c(s)

)θ
e−ρ(s−t).

and the intertemporal elasticity of substitution is

η(c(t)/c(s))/MRS =
∂ ln

( c(t)
c(s)

)
∂ ln(MRS)

=
1

θ
.

�

The program of the household is

max
{c(t),k(t)}

U =

∫ +∞

0
e−ρt

c(t)1−θ

1− θ
dt

s. t. c+ k̇ = f(k)− δk
k(0) = k0.

The current–value Hamiltonian is a technique to transform a dynamic problem into a
static one, where k is a state variable and λ is a costate variable (the shadow price of
capital). The Hamiltonian is the instantaneous utility plus the change in capital stock
valued according to λ

H(c, k, λ) =
c1−θ

1− θ
+ λ[f(k)− δk − c].

The first–order conditions are found from the Maximum Principle. Maximizing the
Hamiltonian with respect to the control variable yields the optimal control

c(t)−θ = λ(t).

The first–order condition with respect to the costate variable yields the dynamic equation

ρλ = [f ′(k)− δ]λ+ λ̇.

From the first–order conditions

λ̇

λ
= ρ+ δ − f ′(k),

−θ ln c = lnλ.

By taking a time derivative on both sides

−θ ċ
c

=
λ̇

λ
,

and solving yields the Keynes-Ramsey rule for the growth of consumption

ċ

c
=
f ′(k)− δ − ρ

θ
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The Mangasarian sufficiency conditions are
• If λ > 0, then the Hamiltonian H(c, k, λ) is strictly jointly concave in (c, k).
• The transversality condition holds

lim
t→∞

e−ρtλ(t)k(t) = 0.

Note that this is similar to a complementary slackness condition.

Definition: Equilibrium of the Ramsey Model
An equilibrium of the Ramsey model is a pair of functions

(
c(t), k(t)

)
satisfying

ċ

c
=
f ′(k)− δ − ρ

θ
(1)

k̇ = f(k)− δk − c(2)

(3) lim
s→+∞

e−ρs
k(s)

[c(s)]θ
= 0

(4) k(0) = k0

1.7.2. The Steady–State of the Ramsey Model

Next, a steady–state is a pair (k, c) such that k̇ = 0 and ċ = 0. This respectively implies

f ′(k) = ρ+ δ

f(k)− δk = c

Notice that the steady–state capital stock decreases with δ and ρ, and the capital stock
increases if the production technology, f(k), becomes more efficient. Also notice that the
agents’ willingness to smooth consumption across time does not influence the steady–
state capital stock.

Notice that steady–state investment is f(k) − c = δk. Thus, the saving rate at the
steady–state is

s =
δk∗

f(k∗)
.

The steady–state saving rate is increasing with k∗, and has a negative relationship with
ρ (e.g. a decrease in ρ raises the saving rate).

Example: The Ramsey Model with Cobb-Douglas Production
Given a Cobb-Douglas production function

f(k) = Akα,

the steady–state, where k̇ = 0, occurs where

Aαkα−1 = ρ+ δ.

Thus, steady–state capital stock is

k∗ =

(
Aα

ρ+ δ

) 1
1−α

,

and the saving rate is

s =
δk

Akα
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s = k1−α δ

A

s =

(
Aα

ρ+ δ

) 1−α
1−α δ

A

s = α
δ

ρ+ δ
.

The capital stock that maximizes steady–state consumption is the golden–rule capital
stock, kGR, and satisfies

f ′(kGR) = δ.

The capital stock in equilibrium satisfies f ′(k∗) = δ + ρ. Therefore, k∗ < kGR and the
economy is dynamically efficient.

1.7.3. The Dynamics of the Ramsey Model

Next, to study the properties of the dynamic system, linearize the transition equations
in the neighborhood of the steady state(

ċ

k̇

)
=

(
0 f ′′(k∗)c∗

θ
−1 ρ

)

J

(
c− c∗
k − k∗

)
.

Notice that

det J =
f ′′(k∗)c∗

θ
< 0.

This implies that the steady–state is a saddle–point. The transversality condition is
satisfied on the saddle–path. Indeed,

lim
s→∞

λ(s)k(s) = λ∗k∗,

and
lim
s→∞

e−ρsλ(s)k(s) = 0.

From the strict concavity of the Hamiltonian and the Mangasarian sufficiency condition,
the saddle path is the unique solution to the Ramsey problem.

Proof. Let q1 and q2 be the two eigenvectors and λ1 < 0 and λ2 > 0 be the two
eigenvalues associated with the Jacobian matrix. It follows that(

c− c∗
k − k∗

)
= C1q1eλ1t + C2q2eλ2t.

From the transversality condition

lim
t→∞

(
c− c∗
k − k∗

)
= 0,

which implies that C2 = 0. Therefore,

c(t) = c∗ + eλ1t[c(0)− c∗]
k(t) = k∗ + eλ1t[k(0)− k∗].

�
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The speed of adjustment to the steady–state is given by |λ1|, where

λ1 =
ρ−

√
ρ2 − 4f

′′(k∗)c∗

θ

2
.

The higher the elasticity of substitution, the faster capital accumulates. This is because
people are more willing to accept low consumption early on in their life in exchange for
higher consumption later.

A fall in ρ is the closest analogue to a rise in the saving rate in the Solow model. Suppose
that the change is unexpected, that is, at some date households suddenly discover that
they now discount utility at a lower rate. In the phase diagram, only the c-locus is
affected which will lead to an increase in k∗. Note that k is a predetermined variable
and cannot change discontinuously. In contrast, c can jump to a new value at any time.
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1.8. Phase Diagrams

Phase diagrams are useful when conducting a qualitative analysis of a system of two
differential equations, studying systems of nonlinear differential equations, or illustrating
the different types of steady–state equilibria.

1.8.1. Construction of a Phase Diagram

Definition: A phase plane consists of a horizontal axis, y1, and a vertical axis, y2.

Definition: An isocline for yi is the locus of points for which ẏi = 0

Definition: The isocline divides the phase plane into two isosectors. One where ẏi is
negative and the other where ẏi is positive.

The two isoclines, for y1 and y2, intersect where both ẏ1 and ẏ2 equal zero. These are
the steady–state points. From the two isoclines, the four quadrants can be deduced. In
each quadrant, it is customary to draw arrows of motion to indicate how the system
evolves.
• ← and ↓ indicates that ẏ1 < 0 and ẏ2 < 0.
• ← and ↑ indicates that ẏ1 < 0 and ẏ2 > 0.
• ← and ↓ indicates that ẏ1 > 0 and ẏ2 < 0.
• → and ↑ indicates that ẏ1 > 0 and ẏ2 > 0.,

1.8.2. Vector Fields

The system of differential equations is interpreted as the equations of motion of a particle
in the plane, with velocity vector (ẏ1, ẏ2).

Definition: A vector field is a family of vectors where, for each point in the phase
plane, you draw the velocity vector, (ẏ1, ẏ2), with its tail at the point and pointing in
the direction of the particle’s motion.

Example: Phase Diagram with a Stable Node
Consider the following differential equation system

ẏ1 = −2y1 + 2

ẏ2 = −3y2 + 6

Written as ẏ = Ay + b, then

A =

(
−2 0
0 −3

)
.

The trA = −5, det A = 6, so (trA)2 − 4 det A = 25 − 24 = 1. Thus, there is a stable
node. The isoclines for y1 and y2 are as follows.

• If ẏ1 = 0, then y1 = 2.
• If ẏ1 > 0, then y1 < 1.
• If ẏ1 < 0, then y1 > 1.

• If ẏ2 = 0, then y2 = 2.
• If ẏ2 > 0, then y2 < 2.
• If ẏ2 < 0, then y2 > 2.

Vector field
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Example: Phase diagram with an Unstable Node
Consider the following system of differntial equations

ẏ1 = 2y1 − 2

ẏ2 = 3y2 − 6

Written as ẏ = Ay + b, then
A =

(
2 0
0 3

)
.

The trA = 5, det A = 6, so (trA)2 − 4 det A = 25− 24 = 1. Thus, there is an unstable
node. The isoclines for y1 and y2 are as follows.

• If ẏ1 = 0, then y1 = 1.
• If ẏ1 > 0, then y1 > 1.
• If ẏ1 < 0, then y1 < 1.

• If ẏ2 = 0, then y2 = 2.
• If ẏ2 > 0, then y2 > 2.
• If ẏ2 < 0, then y2 < 2.

Vector field

Example: Phase Diagram with a Saddle Point
Consider the following differential equation system

ẏ1 = y2 − 2

ẏ2 =
y1

4
− 1

2

Written as ẏ = Ay + b, then

A =

(
0 1
1
4 0

)
.

The trA = 0, det A = −1
4 , so (trA)2− 4 det A = 0− 4(−1

4) = 1. Thus, there is a saddle
point. The isoclines for y1 and y2 are as follows.

• If ẏ1 = 0, then y2 = 2.
• If ẏ1 > 0, then y2 > 2.
• If ẏ1 < 0, then y2 < 2.

• If ẏ2 = 0, then y1 = 2.
• If ẏ2 > 0, then y1 > 2.
• If ẏ2 < 0, then y1 < 2.
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1.8.3. Finding a Saddle Path

In order to find a saddle path, first diagonalize the matrix A

A =

(
0 1
1
4 0

)
=

(
1
2

1
2

1
4 −1

4

)(
1
2 0
0 −1

2

)(
1 2
1 −2

)
.

Then utilize the change of variables technique(
x1

x2

)
=

(
1 2
1 −2

)(
y1

y2

)
.

The system becomes(
ẋ1

ẋ2

)
=

(
1
2 0
0 −1

2

)(
x1

x2

)
+

(
1 2
1 −2

)(
−2
−1

2

)
.

Notice that x1 is unstable whereas x2 is stable. The saddle path is such that x1 is equal
to its steady–state value so that it does not diverge

ẋ1 =
1

2
x1 − 3 = 0

x1 = x1 = 6.

Using the fact that x1 = y1 + 2y2, the equation of the saddle path is

y1 + 2y2 = 6.

Vector field

Example: A Phase Diagram with a Stable Focus
Consider the following differential equation system

ẏ1 = −y2 + 2

ẏ2 = y1 − y2 + 1

Written as ẏ = Ay + b, then

A =

(
0 −1
1 −1

)
.

The trA = −1, det A = 1, so (trA)2 − 4 det A = 2 − 4(1) = −2 < 0. Thus, there is a
stable focus. The isoclines for y1 and y2 are as follows.
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• If ẏ1 = 0, then y2 = 2.
• If ẏ1 > 0, then y2 < 2.
• If ẏ1 < 0, then y2 > 2.

• If ẏ2 = 0, then y1 − y2 = −1.
• If ẏ2 > 0, then y1 − y2 > −1.
• If ẏ2 < 0, then y1 − y2 < −1.

Vector field

There is a steady–state, where ẏ1 = 0 and ẏ2 = 0, such that y1 = 1 and y2 = 2.

Example: The Dornbusch Model of Exchange–Rate Overshooting
A dynamic version of the Mundell–Fleming model helps analyze how exchange rates
respond to a change in the money supply in an economy where the goods market does
not clear instantaneously. The real demand for money is

mD = −ar + by.

The equilibrium of the money market is

m− p = −ar + by.

There is perfect–foresight expectations of the depreciation of the national currency, ė,
resulting in the interest rates parity

r = r∗ + ė,

where e is the exchange rate defined as the domestic price of foreign currency. From the
two last equations

ė = −r +
by −m+ p

a
.

There is sluggish adjustment of prices

p = α(yD − y),

where α > 0 and aggregate demand is given by

yD = u+ v(e− p).

The differential equation for prices is then

ṗ = α(u+ ve− vp− y).

The system of differential equations can be written in matrix form(
ṗ
ė

)
=

(
−αv αv

1
α 0

)(
p
e

)
+

(
α(u− y)
by−m
a − r∗

)
.
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Denote A the matrix of coefficients. Then

det A = −αv
a
< 0,

and all the roots are real valued and of opposite sign. Thus, the steady–state is a
saddle–point. At the steady–state(

ṗ
ė

)
=

(
0
0

)
(
−αv αv

1
α 0

)(
p
e

)
=

(
α(u− y)
by−m
a − r∗

)
(
p
e

)
=

a

αv

(
0 −αv
− 1
a −αv

)(
α(u− y)
by−m
a − r∗

)
(
p
e

)
=

(
−by +m+ ar∗

−u−y
v − by +m+ ar∗

)
.

The p isocline in the phase diagram is

ṗ = 0

p =
u− y
v

+ e.

The e isocline in the phase diagram is

ė = 0

p = ar∗ − by +m = p.

The domestic price, p, changes sluggishly, because of the initial condition, p0. The nom-
inal exchange rate, e, can adjust instantly, because there is no initial value for e. To
determine the trajectory of the economy, a condition imposed by the assumption of
perfect foresight is that agents only anticipate trajectories that converge to the steady
state

lim
t→∞

e(t) = e.

Assume there is an initial point, steady–state (p1, e1), and an increase in the money
supply, m. Then, the p isocline is not affected, the e isocline moves upward, and in the
long run, both p and e increase, while the real exchange rate rate remains unchanged.
The increase in m triggers a jump of the exchange rate

e1 → e2.

Following the jump, the nominal exchange rate is larger than its new steady-state value,
initially overshooting the new steady-state exchange rate

e2 > e2.
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1.9. The Neoclassical Growth Model in Continuous Time

The Ramsey problem is that an agent wish to maximize her lifetime utility subject to
a technological constraint. This is equivalent to the program of a social planner. In
the decentralized economy, assume that there are households who consume and supply
labor services, and firms who rent capital and labor services and produce output. The
objective is to discover if the decentralized equilibrium efficient.

1.9.1. Ramsey’s Neoclassical Growth Model

First, time is continuous and infinite. there are a large number of identical firms with
CRS production function

Y = F (K,L).

The firms hire workers and rent capital. The factor markets and output markets are
competitive. The firms are owned by the households, where there are a large number,
H, of identical households. Each household supplies 1 unit of labor at every point in
time and rents its capital to the firms, where its initial capital is

K(0)

H
,

and capital depreciates at rate δ. There is a debt market in which households can borrow
and lend. Loans and capital pay the same real rate of return, r(t), and are thus perfect
substitutes. The rental rate of capital is

pk(t) = r(t) + δ.

Both households and firms are price–takers and have perfect foresight expectations. This
implies that current and future values of r(t) and w(t) are known

r(t) = pkK,w(t) = wL.

The firm’s behavior is equivalent to the static program

max
K,L

F (K,L)− pkK − wL,

or equivalently in intensive form

max
k

k(k)− pkk − w.

The first order conditions imply that

pk = f ′(k),

w = f(k)− pkk.

Note that
w = f(k)− f ′(k)k.
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Next, the household’s utility function

U =

∫ +∞

0
e−ρtu(c(t)) dt,

takes the form of an instantaneous utility function

u(C) =

{
C1−θ

1−θ if θ > 0,

lnC if θ = 1,
,

where 1
θ is the intertemporal elasticity of substitution. Let a(t) denote the net value

of the household’s assets. All assets guarantee the same rate of return, r. The law of
motion for the household’s assets is

c+ ȧ = w + ra

By the method of the integrating factor

lim
s→+∞

e−R(s)a(s) = a(0) +

∫ +∞

0
e−R(t)[w(t)− c(t)] dt,

where

R(t) =

∫ t

0
r(τ) dτ.

There is a no–Ponzi game condition that is imposed

lim
s→+∞

e−R(s)a(s) ≥ 0.

The present value of the household’s asset holdings cannot be negative in the limit. So,
someone cannot issue debt and roll it over forever

a(0) +

∫ +∞

o
e−R(t)[w(t)− c(t)] dt ≥ 0.

The program of the household is then

max
{c}

U =

∫ +∞

0
e−ρt

C1−θ

1− θ
dt

s. t. c+ ȧ = w + ra

lim
t→+∞

e−R(t)a(t) ≥ 0

a(0) = a0.

The current-value Hamiltonian is

The first–order condition corresponding to the optimal control is

c(t)−θ = λ,

where the costate variable, λ, is the shadow price of capital. The equation for the costate
variable is

ρλ = λr + λ̇.
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If you take a time derivative of the first–order condition,

−θċc−θ−1 = λ̇,

and rearrange the costate equation, so that

λ̇

λ
= ρ− r.

Thus, optimal consumption growth is given by

ċ

c
=
r − ρ
θ

.

The Mangasarian sufficient conditions must hold.
• The Hamiltonian H(c, k, λ∗), is jointly concave in (c, k) where λ∗ is generated by

the maximum principle.
• The transversality condition holds

lim
t→∞

e−ρtλ∗(t)[a(t)− a∗(t)] ≥ 0,

where a∗(t) is the candidate for a maximum and a(t) is an alternative admissible
trajectory.

The dynamic equation for λ implies

λ∗ = λeρt−R(t)

e−ρtλ∗ = λe−R(t).

The no–Ponzi game condition can then be rewritten as

lim
t→+∞

e−ρtλ∗(t)a(t) ≥ 0.

From the previous transversality condition, a sufficient condition for a maximum is that

lim
t→+∞

e−ρtλ∗(t)a(t) = 0.

In equilibrium, The labor and the capital markets clear

L = H,

a = k.

Therefore, the law of motion for the household is

c+ k̇ = f(k)− δk.

Definition: An equilibrium of the decentralized Ramsey model is a 4–tuple

{c(t), k(t), r(t), w(t)},

that satisfies

ċ

c
=

(
f ′(k)− δ − ρ

θ

)
,

k̇ = f(k)− δk − c,
r(t) = f ′(k(t))− δ
w(t) = f(k(t))− f ′(k(t))k(t)

lim
s→+∞

e−ρs
k(s)

c(s)θ
= 0

k(0) = k0.
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1.9.2. The Steady–State and Dynamics of the Ramsey Model

The decentralized Ramsey model is equivalent to the centralized Ramsey model. The
models share the same phase diagram, steady–state and dynamics. In particular, the
steady–state, where k = k∗, is

f ′(k) = δ + ρ,

c = f(k)− δk,
r∗ = ρ.

There are the same first–order conditions as the ones of the competitive equilibrium.
Thus, the decentralized equilibrium is Pareto efficient and satisfies the 1st Welfare The-
orem.

Note that from a an unanticipated fall in the discount rate, there is a new steady–state
and a new saddle path. Initially, consumption falls, then capital converges asymptotically
to its new steady–state value which is higher, resulting in higher long–run consumption.

1.9.3. The Neoclassical Growth Model with Government

Suppose that there is a government who buys output at rate g(t) per unit of labor per
unit time. Government purchases affect neither the utility of private agents nor the
production technology. There is a balanced budget, financed by lump–sum taxes of
amount g(t). The law of motion for capital is

k̇ = f(k)− δk − c− g(t).

Notice that the k–locus is affected. The c-locus given by the Euler equation is unaffected
by the presence of the government. The no–Ponzi game condition still holds

k(0) +

∫ +∞

0
e−R(t)[w(t)− g(t)− c(t)] dt ≥ 0.

Example: A Non–Anticipated Increase in the Government’s Spending
Suppose that there is a non–anticipated increase in the government’s spending. The
trajectory for government’s expenditure is

g(t) =

{
g0 for all t < t1,

g1 > g0 for all t ≥ t1.

At t = t1, the system jumps to its new steady–state, consumption falls by the exact
amount of the increase in g, and capital stock is unchanged.

Example: An Anticipated Increase in the Government’s Spending
Now, suppose that there is an anticipated increase in government’s spending. At t =
t0 < t1 the government announces the future increase in government’s spending. The
households want to smooth consumption, this implies that consumption starts to fall
before taxes have increased. The capital stock increases and then decreases, and in the
long run is unchanged.

Example: Ricardian Equivalence
Suppose that the path for government’s spending, g(t), is exogenous. The government’s
purchases can be financed through taxation or by issuing bonds. The initial debt of the
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government per unit of labor is D0. The budget constraint for the government is an
identity

g(t) + rD = Ḋ + T (t),

and there is a no–Ponzi game condition

lim
s→+∞

e−R(s)D(s) = 0.

The budget constraint of the government can be rewritten as

D0 +

∫ ∞
0

e−R(t)g(t) dt =

∫ ∞
0

e−R(t)T (t) dt.

The budget constraint of households is

a(0) +

∫ +∞

0
e−R(t)[w(t)− T (t)] dt =

∫ ∞
0

e−R(t)c(t) dt.

If you combine the two, then

a(0)−D0 + e−R(t)[w(t)− g(t)] dt =

∫ ∞
0

e−R(t)c(t) dt.

The result is Ricardian equivalence, that is, the choice of T (t) has no real consequences.
Agents know that a reduction in taxes today has to be matched by an increase in taxes
in the future. Following a decrease in taxes, households keep their consumption constant
and raise their savings.
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1.10. A Model of Endogenous Growth

In the Solow and Ramsey models, the rate of growth of the economy is exogenous, output
per–capita grows at the rate of technological progress. The saving rate does influence
transitional dynamics, but not long–run growth. To extend the Ramsey model to allow
for endogenous growth, you can drop the assumption of diminishing returns to capital
accumulation (Paul Romer, 1986). This is the AK approach of endogenous growth.

1.10.1. The Endogenous Growth Model

Assume that there is a household (or one agent) who is infinitely-lived. She chooses how
much to consume and to save (invest) in order to maximize her lifetime utility. There is
initial capital, k(0), and no capital depreciation. There is a non–neoclassical production
function. There is a linear production function

f(k) = Ak,

where the marginal product of capital, A, is not diminishing. Thus, the Inada conditions
are violated

lim
k→∞

f ′(k) = A 6= 0.

This is the key element that underlies endogenous growth.

The program of the household is

max
{c}

U =

∫ +∞

0
e−ρt

c(t)1−θ

1− θ
dt

s. t. c+ k̇ = Ak

k(0) = k0,

where it is assumed that (1− θ)A < ρ < A. The current–value Hamiltonian is

(H, c, k, λ) =
c(t)1−θ

1− θ
+ λ[f(k)− c].

The first–order condition results in the optimal control

c(t)−θ = λ(t).

The equation for the costate variable is

ρλ = Aλ+ λ̇.

From the two previous equations it follows that

λ̇ = −θċc−θ−1

λ̇

λ
= ρ−A.

Thus,
ċ

c
=
A− ρ
θ

> 0,

consumption growth does not depend on the stock of capital. Furthermore, from the
first–order condition and the law of motion of capital, then

c+ k̇ = Ak ≥ 0,

and there is no steady–state with positive consumption.
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1.10.2. The Balanced Growth Equilibrium

There is no steady state for k in the endogenous growth model. However, you can look
for an equilibrium where k and c grow at constant rate and then the ratio (c/k) would
be constant.

Definition: An equilibrium of the endogenous growth model is a pair of functions,
{k(t), c(t)}, that satisfy

ċ

c
=
A− ρ
θ

and k̇ = Ak − c,

s. t. lim
t→∞

e−ρt
k(t)

c(t)θ
= 0 and k(0) = k0.

First, define z ≡ (c/k). To write a differential equation for z, you can take the log of z
and differentiate with respect to time

ż

z
=
ċ

c
− k̇

k
ż

z
=
A− ρ
θ
−A+ z

ż

z
=
A(1− θ)− ρ

θ
+ z.

Thus, the steady–state for z = c
k is

z =

{
0,
ρ−A(1−θ)

θ .

The transversality condition is

lim
t→∞

e−ρtλ(t)k(t) = 0.

You then have

λ(t)k(t) = (kc )[c(t)]1−θ

λ(t)k(t) = (kc )[c(0)]1−θe
A(1−θ)−ρ

θ
t.

At the steady-state value of z = c
k , then

lim
t→∞

e−ρtλ(t)k(t) = lim
t→∞

(kc )[c(0)]1−θe
A(1−θ)−ρ

θ
t = 0.

Under the balanced growth path, the ratio c
k is constant and equal to(

c

k

)∗
=
ρ−A(1− θ)

θ
,

and consumption, capital, and output are all growing at the same rate.

ċ

c
=
k̇

k
=
ẏ

y
=
A− ρ
θ

.

The ratio (c/k) is a jump variable, that is, it adjusts instantly to its steady–state value.
The rates of growth of c, k, and y are constant and do not depend on any endogenous
variables. There are no transitional dynamics.
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The saving rate is given by

s = 1− c

Ak

s = 1− ρ−A(1− θ)
Aθ

s =
A− ρ
Aθ

.

There is a relationship between the rate of growth and the saving rate

As =
ẏ

y
.

In the long–run, growth rate depends on the willingness to save and the productivity of
capital. Lower values of ρ and θ imply a higher willingness to save, and this will result
in a higher growth rate. An improvement in the level of technology will also lead to
a higher growth rate. These are conclusions that are very different from those of the
Ramsey model.

1.10.3. Endogenous Growth with Physical and Human Capital

A shortcoming of the previous model is that the share of capital in national income is
equal to one. Consider the introduction of human capital, h, with a production function

y = kf

(
h

k

)
,

that has CRS with respect to h and k, and f(·) is strictly concave. Let investment in
physical capital be i. The program of the agent is

max
{c}

U =

∫ +∞

0
e−ρt

c(t)1−θ

1− θ
dt

s. t. ḣ = kf(hk )− c− i
k̇ = i

k(0) = k0.

The Hamiltonian of the agent is

H(k, h, c, i, λk, λh) =
c(t)1−θ

1− θ
+ λh

[
kf

(
h

k

)
− c− i

]
+ λki.

The first–order conditions are

c−θ = λh

λh = λk.

The shadow value of physical capital is

ρλk = λh[f(hk )− f ′(hk )hk ] + λ̇k,

and the shadow value of human capital

ρλh = λhf
′(hk ) + λ̇h,

The condition λh = λk gives

f

(
h

k

)
− f ′

(
h

k

)
h

k
= f ′

(
h

k

)
.

Thus, both types of capital have the same rate of return.
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Let κ = h
k denote the solution to

f(κ)− f ′(κ)κ = f ′(κ),

and let A = f ′(κ). The model reduces to the simple AK model described earlier. The
rate of growth of consumption and output is given by

ċ

c
=
ẏ

y
=
f ′(hk )− ρ

θ
.

1.10.4. Endogenous Growth with Knowledge Spillovers

Assume that each agent’s knowledge is a public good, that is, knowledge of one agent
spills over across the whole economy. The knowledge agents depends on the aggregate
stock of capital through a learning–by–doing effect. The production for agent can then
be written as

yi = f(ki, k),

where f(·) is a CRS production function and k is aggregate capital stock. The program
of the household

max
{c}

U =

∫ +∞

0
e−ρt

c(t)1−θ

1− θ
dt

s. t. c+ k̇ = f(k, k)

k(0) = k0.

This is the standard Ramsey model with diminishing private returns of capital accumu-
lation. The solution to the program is

ċ

c
=
fk(k, k)− ρ

θ
.

All the agents choose the same capital stock, k = k. The rate of growth of consumption
and output in equilibrium is then

ċ

c
=
ẏ

y
=
fk(k, k)− ρ

θ
.

Example: Knowledge Spillovers with Cobb–Douglas Production
Given a Cobb–Douglas production function

f(ki, k) = Akαi k
1−α

,

you can find the first order condition

fk(ki, k) = Aα

(
k

ki

)1−α
.

Thus, the growth of consumption and output in equilibrium given Cobb–Douglas tech-
nology is

ċ

c
=
ẏ

y
=
Aα− ρ

θ
.
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Example: Knowledge Spillovers with a Social Planner
Consider a social planner who internalizes the spillovers of knowledge across the firms.
The program of the social planner is

max
{c}

U =

∫ +∞

0
e−ρt

c(t)1−θ

1− θ
dt

s. t. c+ k̇ = f(k, k)

k(0) = k0.

The solution to the program is

ċ

c
=
fk(k, k) + fk(k, k)− ρ

θ
.

Thus, the rate of growth in the planned economy is greater than in the decentralized
economy. Note that under the Cobb–Douglas specification, that the rate of growth
should be

A− ρ
θ

.

The agents in the decentralized economy do not internalize the positive externality of
capital accumulation from knowledge spillovers.

i - 58



1.11. Dynamic Programming Applications

1.11.1. Optimal Unemployment

The labor market differs from other markets in that labor is not homogeneous. It takes
time for a worker to find a job, and for a vacancy to find a worker. There are large flows
of workers and jobs between activity and inactivity, and large and persistent stocks of
vacancies and unemployed workers. This section looks at the trade sector of the labor
market and its frictions. A modeling device, similar to the aggregate production function
introduced by Pissarides (1985, 1990), takes the form

M = m(U, V ),

where U is the number of unemployed workers, V is the number of vacancies, and M is
the number of match creations (hires).

Properties:

• The matching function is increasing with respect to its two arguments

mU > 0,

mV > 0.

• There cannot be match creation without agents to be matched on both sides of
the market

m(0, V ) = m(U, 0) = 0.

• The matching function is strictly concave with respect to each of its arguments

mUU < 0,

mV V < 0.

• The matching function is homogenous of degree 1 with respect to U and V .

Consider two economies which differ only with respect to their size. Under CRS the
two economies have the same unemployment rate. The matching technology can be
rewritten as

M = mUU +mV V,

where

mU =
∂m

∂U
,

mv =
∂m

∂V
.

The job finding rate of an unemployed worker is

p =
m(U, V )

U
= m(1, θ),

where θ = V/U indicates market tightness.

Example: Cobb–Douglas Matching Technology
The Cobb–Douglas specification of the matching function is

m(U, V ) = AUαV 1−α,

where the efficiency of the matching process A > 0, and 0 < α < 1. This specification is
reasonably successful in empirical studies (Blanchard and Diamond, 1990).
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Let the labor force be normalized to one. The measure of employed (employment rate)
is e(t) and the unemployment rate is u(t) = 1 − e(t). There are v(t) vacancies and a
separation rate s. The law of motion for the employment rate is

ė = m(u, v)− se.

All agents are risk neutral and discount future utility at rate r. The income of an
unemployed agent is b. The productivity of a match is y and there is a flow cost of
opening a vacancy, γ. A benevolent planner who maximizes society’s net output faces
the optimization problem

max
{e(t),v(t)}

∫ ∞
o

e−rt[e(t)y + (1− e(t))b− v(t)γ] dt

s. t. ė(t) = m[1− e(t), v(t)]− se(t),
e(0) = e0.

The planner is subject to the matching frictions as described by m. The current-value
Hamiltonian is

H(e, v, λ) = e(y − b) + b− vγ + λ[m(1− e, v)− se],

where λ, the shadow value of a job, is the co–state variable. The optimal control is

γ = λmv(1− e, v).

The cost of opening a vacancy is equal to the shadow value of a job times the marginal
contribution of a vacancy to the matching process. Equivalently,

γ =

Vacancy Filling Rate︷ ︸︸ ︷
m(1− e, v)

v

Vacancy Share︷ ︸︸ ︷
mv(1− e, v)v

m(1− e, v)
λ.

The equation for the co–state variable is

rλ = y − b−mu(1− e, v)λ− sλ+ λ̇,

and has the usual interpretation as an asset pricing equation. The term b+mu(1−e, v)λ)
can be interpreted as the flow value of an unemployed worker. It can be rewritten as

b+

Job Finding Rate︷ ︸︸ ︷
m(1− e, v)

u

Unemployed Share︷ ︸︸ ︷
mu(1− e, v)u

m(1− e, v)

Match Value︷︸︸︷
λ .

Example: Cobb–Douglas Matching Technology (Continued)
For simplicity, let

m(u, v) = A
√
u
√
v.

The optimal control implies that √
v

1− e
=
λA

2γ
.
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The number of vacancies per unemployed, v
1−e is called market tightness. The equation

for the co–state becomes

rλ = y − b− λA

2

√
v

1− e
− sλ+ λ̇

rλ = y − b− 1

γ

(
λA

2

)2

− sλ+ λ̇.

An equilibrium can be reduced to a pair of functions, e(t) and λ(t), that satisfy the
following system of differential equations

λ̇ = (r + s)λ+
1

γ

(
λA

2

)2

+ b− y

ė = A2 λ

2γ
(1− e)− se,

where the initial condition, e(0) = e0, and the Mangasarian sufficiency condition hold
from the the fact that the state variable is non negative

lim
t→∞

e−rtλ(t)e(t) = 0.

To reach the stationary solution, consider the solution such that

λ̇ = 0,

ė = 0.

Then, the shadow value of a job solves

1

γ

(
A

2

)2

λ2 + (r + s)λ− (y − b) = 0.

The positive root is

λ∗ =
2γ

A2

[√
(r + s)2 +

A2

γ
(y − b)− (r + s)

]
.

The employment rate is

e∗ =
A2λ∗

2γs+A2λ∗
,

where e∗ < 1. Thus, it is optimal to have some unemployment.

Next, you can linearize the first–order equations around their steady states(
λ̇
ė

)
=

(
(r + s) + 2λ∗

γ (A2 )2 0

A2 (1−e∗)
2γ −A2λ∗

2γ − s

)(
λ− λ∗
e− e∗

)
.

The steady–state is a saddle point and the saddle path is such that λ(t) = λ∗ and

ė = e∗ + (e0 − e∗) exp

[
−
(
A2 λ

∗

2γ
+ s

)
t

]
.

Graphically, the saddle path coincides with the λ–isocline, and in the space (e, λ) it is
horizontal.

The model provides a rich set of comparative statics.
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A higher separation rate, s means a lower value of a match and higher unemployment.
Higher productivity, y, means a higher value of a match and lower unemployment. Higher
match efficiency, A, means lower value of a match and lower unemployment.

The speed at which employment converges to its steady–state value is

A2 λ
∗

2γ
+ s =

√
(r + s)2 +

A2(y − b)
γ

− r.

Notice that the transition to the steady–state is faster if y is high and b is low. If the
cost to open vacancies, γ, is high (e.g., because if credit market frictions) then the speed
of convergence is low.

If there is an unanticipated shock that raises workers’ productivity, y, then the shadow
value of a job, λ∗, increases. Note that λ jumps instantly to its new steady–state value,
and that the same is true for market tightness. Employment and unemployment converge
gradually to their steady–state values.

1.11.2. Search Unemployment

Consider a Walrasian frictionless market where workers can find a job instantly. The only
decision of a worker is whether or not to participate in the market. Search theory helps
describe the worker’s optimal search strategy, that may be affected by the distribution
of job offers, the job destruction rate, and search costs. The first model in the economics
literature, by Stigler (1961, 1962), regards choosing the optimal size of a sample. Next,
search models where applied to the labor market by McCall (1970) who suggested that
searching is sequential. For a review, see Mortensen (1986).

Assume that time is discrete and represented by t ∈ N∗. The lifetime utility of a worker
is

E
[ ∞∑
t=0

βtU(ct)

]
,

where ct is the consumption at time t, and β ∈ (0, 1). It is assumed that

U ′ > 0

U ′′ < 0

U(0) = 0

U ′(0) <∞.

The worker cannot borrow or lend, her consumption is equal to her earnings. The worker
begins each period with a current wage offer, w. She then has two alternatives; she can
can work at that wage, or she can search for a new wage offer. All wage offers lie in
[0, w]. Let f be the density of wages, w, on that interval and F the c.d.f. If the worker
chooses to work during the current period, then with probability 1− s the same wage is
available to her next period. With probability s she will lose her job at the beginning
of the next period and begin the next period with a wage of 0.

For a recursive formulation of the problem, the state variable is the current wage, w,
and the control variable is the search variable y ∈ {0, 1}, where

y =

{
0 if the worker searches,

1 if the workerworks at her current job.
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The value function is v(w). If the worker chooses to work, y = 1, her expected present
discounted value of utility is

v(y = 1) = U(w) + β[(1− s)v(w) + sv(0)].

If the worker chooses to search instead, her expected utility is

v(y = 0) = 0 + β

∫ w

0
v(x)f(x) dx.

The value function solves the following Bellman equation

v(w) = max
y∈{0,1}

{
U(w) + β[(1− s)v(w) + sv(0)], 0 + β

∫ w

0
v(x)f(x) dx

}
.

Note that v(w) is bounded above by U(w)/(1 − β) and below by U(0) = 0. There-
fore, you can work with the space of bounded functions B([0, w]) with the supremum
metric. Also, since U(w) is continuous, you can work with the subspace of continuous
bounded functions C([0, w]). You can then check that the Blackwell sufficient conditions
are satisfied. First, the value function is monotonic. If h ≤ g, then

β[(1− s)h(w) + sh(0)] ≤ β[(1− s)g(w) + sg(0)]∫ w

0
h(x)f(x) dx ≤

∫ w

0
g(x)f(x) dx.

Therefore, Th ≤ Tg. Second, the value function satisfies discounting

T (h+ a) = Th+ βa.

Theorem: The Banach Fixed–Point Theorem
The Banach fixed–point theorem states that given C([0, w]) where the supremum met-
ric is a complete metric space, then the mapping given by the Bellman equation is a
contraction mapping.

Therefore, from Banach fixed–point theorem, there is a unique v that solves the Bellman
equation. This is because of the properties of the value function. Note that U(w)
is increasing and you can work with a closed subspace of weakly increasing functions.
Furthermore, v(w) is weakly increasing. Let

A = β

∫ w

0
v(x)f(x) dx.

From the Bellman equation

v(0) = max

{
βv(0), β

∫ w

0
v(x)f(x) dx

}
= A

v(w) > β

∫ w

0
v(x)f(x) dx = A.

The term U(w)+β[(1−s)v(w)+sv(0)] is strictly increasing in w. That is, at at w = 0 it
is less than A, and at w = w it is greater than A. Therefore there is a unique reservation
wage, w∗ ∈ (0, w), such that

v(w∗) = U(w∗) + β[(1− s)v(w∗) + sv(0)] = A.

Solving for U(w∗) yields
U(w∗) = (1− β)A.
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Quarter II
“My fees are not too high. Your wage scale may simply be too low.”

– Jack Vance, Showboat World

The objective of this section is to introduce you to the theories and methods of dynamic,
stochastic macroeconomics. The hallmarks of dynamic macroeconomic models are in-
tertemporal decision making and stochastic equilibrium processes. In order to study
these two elements, this section is structured to emphasize computational tools and dy-
namic economics. Quarter II begins with some of the basic tools of decision-making in
uncertain environments. All modern macroeconomic theories build on the workhorse
growth models that are covered in Quarter I. You can use the insights from those frame-
works to build up, step by step, to the Dynamic Stochastic General Equilibrium (DSGE)
Model. This section then concludes with applications of the DSGE model to business
cycles, asset pricing, and monetary/fiscal policy.

2.1. Introduction to Stochastic Processes

“An economic model is a probability distribution over a sequence.”
– Thomas J. Sargent

2.1.1. Stochastic Processes

Let xt be a realization form a random variable Xt.

Definition: A stochastic process is a sequence {xt} defined on a probability space.

Definition: An auto–covariance function is defined as

γx(r, s) ≡ cov(xr, xs) = E(xr − Exr)(xs − Exs).

Definition: The stochastic process {xt}t=∞t=−∞ is covariance stationary provided
• Ext = m for all t,
• γx(r, s) = γx(r + t, s+ t) for all t.

For simpler notation, set t = −s and it follows that

γx(r, s) = γx(r − s, 0).

Now, let h be the order of the autocovariance in

γx(h) = γx(h, 0).

• When h = 0, then γx(0) is the variance.
• When h = 1, then γx(1) is the 1st order auto–covariance.

2.1.2. Time Series

It is helpful to introduced the autoregressive moving average (ARMA) representation.

Definition: An autoregressive moving average (ARMA) model is a linear representation
of a stochastic process with constant coefficients.

An ARMA(p, q) representation of xt is

xt = φ1xt−1 + · · ·+ φpxt−p + zt + θ1zt−1 + · · ·+ θqzt−q,
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or
φ(L)xt = θ(L)zt,

where L is a lag operator such that

φ(L) = 1− φ1(L)− · · · − φpLp

θ(L) = 1 + θ1L+ · · ·+ θqL
q.

An AR(p) is simply an ARMA(p, 0), and likewise a MA(q) is simply an ARMA(0, q).

Claim: An AR(1) is stationary provided |φ1| < 1.

Proof.
xt = φ1xt−1 + zt,

and can be rewritten as

xt = φk+1
1 (xt−(k+1)) +

k∑
j=0

φj1zt−j .

Note that
lim
k→0

φk+1
1 (xt−(k+1)) = 0.

It follows that

xt =

∞∑
j=0

φj1zt−j ,

and

Extxt−1 = E(zt + φ1zt−1 + φ2
1zt−2 + . . . )(zt−1 + φ1zt−2 + φ2

1zt−3 + . . . ).

Suppose that |φ1| > 1. Then
xt = φ1xt−1 + zt,

can be rewritten as
xt = φ−1

1 xt+1 − φ−1
1 zt+1.

Continuing forward

xt = −
∞∑
j=1

φj1zt+j .

�

Definition: White noise is a process {zt}
i.i.d.∼ WN (0, σ2) if and only if

• E zt = 0 for all t,

• γz(h) =

{
σ2 if h = 0,

0 otherwise.
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2.1.3. Markov Processes

Definition: Markov Property

Pr(Xt+1|Xt, Xt−1, . . . ) = Pr(Xt+1|Xt).

A Markov process is a continuous state process if the Markov property holds.

A Markov chain is a finite state process if the Markov property holds.

Assume that Xt follows a Markov chain with a transition matrix P , where

Pij = Pr(xt+1 = ej |xt = ei),

and ei is a selector vector.
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2.1.4. Rational Expectations

An expectational difference equation is a process

(1) yt = α+ β Et yt+1 + γzt,

where zt = ezt−1 + εt and −1 < e < 1.

Definition: A rational expectations equilibrium is a sequence {yt} that is a non–
explosive solution to the expectational difference equation (1).

Finding solutions may lead to multiple equilibria, in which case refinement is needed.
One such refinement is the Minimal State Variable (MSV) method. The MSV method
finds a linear process for yt with constant coefficients that depends on a minimal number
of variables. The guess and verify method is as follows.
• First, guess

yt = a+ bzt,

take future expectations
Et yt+1 = a+ bEt zt+1,

substitute for Et zt+1

Et yt+1 = a+ bezt,

then substitute into the difference equation (1)

yt = α+ βa+ βbezt + γzt.

According to the guess, it is implied that

a = α+ βa,

b = βbe+ γ.

Solving yields

a =
α

1− β
,

b =
γ

1− βe
.

The MSV is
yt =

α

1− β
+

γ

1− βe
zt.

• Next, verify

Et yt+1 =
α

1− β
+

γ

1− βe
ezt,

and

yt = α+
αβ

1− β
+

γβ

1− βe
ezt + γzt.

This is the rational expectations equilibrium.

ii - 4



Suppose that you wish to find all the solutions to a rational expectations model. First,
note that the forecast error is

ηt+1 = yt+1 − Et yt+1.

There are rational expectations if

Et ηt+1 = 0.

Note that
Et yt+1 = yt+1 − ηt+1.

Substituting into the expectational difference equation yields

yt = α+ β Et yt+1 + γzt

yt = α+ β(yt+1 − ηt+1) + γzt.

If you assume that α = 0 and γ = 0, then it follows that

yt+1 = β−1yt + ηt+1.

If |β| < 1, then the only solution is β = 0, yt = 0, ηt = 0, and the model is determinate.
If |β| > 1, then there is a continuum of solutions with y0, sequence of ηt, Eηt+1 = 0, and
the model is indeterminate.

Suppose the guessed belief is
yt = β−1yt−1 + ηt.

This implies that future expectations are given by

Et yt+1 = β−1yt + Et ηt+1

Et yt+1 = β−1(β−1yt−1 + ηt) + 0

Et yt+1 = β−2yt−1 + β−1ηt.

You can now substitute into the expectational difference equation

yt = β Et yt+1

yt = β(β−2yt−1 + β−1ηt).

This verifies that the rational expectations equilibrium is

yt = β−1yt−1 + ηt.
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Example: Rational Expectations with an AR(1) Exogenous Process
Consider an expectational difference equation

yt = α+ β Et yt+1 + γzt,

where the exogenous variable follows an AR(1) process

zt = ρzt−1 + εt.

Under rational expectations,

Et yt+1 = yt+1 − ηt+1.

If you set α = 0, then
yt = βyt−1 − βηt+1 + γzt.

You can then write the system in matrix notation as

.
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2.2. Real Business Cycle Models

Begin with the social planner’s problem

max
{ct,xt,lt,nt}

E0

∞∑
t=0

βtu(ct, lt)

s. t. ct + xt = AtF (kt, nt)

kt+1 = (1− δ)kt + xt

nt + lt = 1.

Assume that F (kt, nt) has constant returns to scale.

The intertemporal condition (Euler equation) is

(1) u′(ct, 1− nt) = β Et u′(ct+1, 1− nt+1)[At+1Fk(kt+1, nt+1) + (1− δ)]

[At+1Fk(kt+1,nt+1)+(1−δ)]≡1+rt+1

.

The intratemporal condition (labor/leisure choice) is then found

−ul(ct, 1− nt) + λAtFn(kt, nt)

AtFn(kt,nt)≡MPL=wt

= 0

λ = uc(c, 1− n)

ul(ct, 1− nt)
uc(ct, 1− nt)

= AtFn(kt, nt) ≡ wt.(2)

Also, note that the resource constraint is

(3) ct + xt = AtF (kt, nt) + (1− δ)kt.

The solution is the sequence {ct, xt, nt}t=∞t=0 that solves the intertemporal condition (1),
the intratemproal condition (2), and satisfies the resource constraint (3). A standard
technique is to log–linearize the equations, (1), (2), and (3), around their steady–state.

Notice that

Et uc(ct+1, 1−nt+1)(1+rt+1) = Et uc(ct+1, 1−nt+1)Et(1+rt+1)+covt
(
uc(ct+1, 1−nt+1), (1+rt+1)

)
.

• If covt
(
uc, (1 + rt+1)

)
< 0, then when rt+1 is high, consumption is also high.

• If covt
(
uc, (1 + rt+1)

)
> 0, then when rt1 is high, consumption is low.

2.2.1. Solving Real Business Cycle Models with Bellman Equations

The social planner’s problem can be setup using a Bellman equation and solved using
various methods. Take note that the state variables are k and A, and that the control
variables are c, n, and k′. The value function is

V (k,A) = max
{c,n,k′}

u(c, 1− n) + β EA′|A V (k′, A′)

s. t. c+ k′ = AF (k, n, ) + (1− δ)k.
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Using the Envelope Theorem

Vk(k,A) = uc(c, 1− n)
dc

dk
= uc(c, 1− n)[AFk(k, n) + (1− δ)].

The resulting policy functions are

ct = c(kt, At)

nt = n(kt, At)

kt+1 = k(kt, At).

The corresponding Lagrangian is

L = u(c, 1− n) + β EA′|A V (k′, A′)− λ(c+ k′ −AF (k, n)− (1− δ)k).

The first–order conditions are

uc(c, 1− n)− λ = 0

−ul(c, 1− n) + λAFn(k, n) = 0

−λ+ β EA′|A Vk(k′, A′) = 0.

The Euler (intertemporal) equation is

uc(c, 1− n)

“The opportunity cost of
another unit of capital.”

= β EA′|A uc(c′, 1− n′)[A′Fk(k′, n′) + (1− δ)]

“The return to savings
(MPK + undeprecitated capital)

valued at next period’s MU.”

.

2.2.2. Real Business Cycle Models with Productivity Shocks

If At increases temporarily there are important effects.

Definition: A wealth effect occurs when AtF (kt, nt) increases and causes ct to increase1.

Definition: An income effect occurs when the MPL increases and causes an increase in
wt,

ul
uc

, and lt (a decrease in nt).

Definition: A substitution effect occurs when the MPL increases and causes an increase
in wt, that in turn causes nt to increase2.

Definition: An interest rate effect occurs when the MPK increases and causes an in-
crease in rt+1, that in turn causes more capital to be accumulated, which will lead to an
increase in future output and consumption.

If At increases for one period, then short–run wages are greater than long–run wages
and labor, nt, will increase.

If At increases permanently, then long–run wages, w, increase and labor, nt, is substi-
tuted for leisure, lt, in the short–run, that is, nt will decrease.

1 With consumption smoothing, then ∆ct < ∆yt.
2 Empirically, the substitution effect usually dominates the income effect in most applications.
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2.2.3. Calibration of Real Business Cycle Models

Two main goals for calibration of the RBC model are choosing the parameters for the
utility and production functions. There are concerns that parameters of the utility or
production function may not satisfy the balanced growth path restrictions. Typically,
parameters are chosen from microeconomic studies. Estimating the production function
is often of key importance.

Example: Estimation of a Cobb-Douglas Production Function
Given Cobb-Douglas technology

Yt = Atk
α
t n

1−α
t ,

a researcher could attempt to estimate

log

(
yt
nt

)
= α log

(
kt
nt

)
+ log(At).

Definition: The Solow residual is log(At).

The Solow residual can be estimated by an AR(1) process

log(At) = ρ log(At−1) + εt.

Reading: See Prescott “Theory Ahead of Business–Cycle Measurement”.

Reading: Robert King and Sergio Rebelo (1999). “Resuscitating Real Business Cy-
cles,” Handbook of Macroeconomics.
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2.3. Asset Pricing and Financial Markets

The macroeconomic approach is based on consumption and savings models. Here, you
will be introduced to complete markets of financial assets.

2.3.1. Complete Markets

In a complete market, there are prices for assets that pay off in a given state (i.e. a price
for 1 unit of consumption at time t in state st). There is an introduction of a redundant
asset, a ‘risk–free bond’. Households make consumption decisions for the future and the
future is uncertain (i.e. there are individual and aggregate shocks). Financial markets
allow agents to smooth consumption across dates and states. This is a core component
of modern macroeconomic models. Note that you cannot use Bellman equations to solve
complete market models, because you must calculate summations over dates and states.
The primary results of complete markets are that the distribution of wealth does not
affect the allocation and the agents can fully insure against idiosyncratic risks.

2.3.2. The Lucas Asset Pricing Model

Now, consider the Lucas Asset Pricing Model where there is a representative household.
There is one durable good–exogenous endowments of the ‘Lucas tree’, Nt. Trees yield
a stochastic flow of nondurable goods–dividends or ‘fruit’, yt. Consuming fruit yields
utility, u(ct). Furthermore, households can purchase claims to trees, Nt, that are traded
at price Pt. Household’s can also buy or sell risk–free bonds with a face value of 1 unit
of consumption. Let Lt be the holdings of bonds with bond price

R−1
t =

1

1 + r
.

The household’s optimization problem is

max
{Ct,Nt,Lt}

E0

∞∑
t=0

βtu(Ct)

s. t. Ct + PtNt +R−1
t Lt = (Pt + yt)Nt−1 + Lt−1.

The first–order conditions are

u′(Ct)− λt = 0

−Ptλt + Et(Pt+1 + yt+1)λt+1 = 0

−R−1
t λt + Et λt+1 = 0.

The Euler equations are

R−1
t = β Et

[
u′(Ct+1)

u′(Ct)

]
Pt = β Et

[
u′(Ct+1)

u′(Ct)

]
(Pt+1 + yt+1).

The result is complete market prices, {Pt, R−1
t }, for the durable good and the bond.

There is an equilibrium if and only if the following conditions hold.
• There is a sequence {Ct, Nt, Lt} that solves the household’s optimization problem

given complete market prices {Pt, R−1
t }.
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• All markets clear,

Ct = yt

Nt = N

Lt = 0,

including the bond market.

2.3.3. The Martingale Theory of Stock–Prices

Definition: A martingale is a process xt such that E[xt + 1] = xt.

Note that in the Lucas Asset Pricing Model

Pt = β Et
[
u′(yt+1)

u′(yt)

]
Et[Pt+1 + yt+1] + βcov

[
u′(yt+1)

u′(yt)
, Pt+1 + yt+1

]
.

If

• the ratio

[
u′(yt+1)
u′(yt)

]
is constant

• and cov

[
u′(yt+1)
u′(yt)

, Pt+1 + yt+1

]
= 0,

then the household is risk neutral and

Pt = β Et[Pt+1 + yt+1].

If this is correct, then the future price for discounted dividends is the best forecast of
future prices, Pt. Alternatively, Pt contains all useful information about future payoffs.
This result is the Efficient Market Hypothesis.

2.3.4. Term Structure of Interest Rates

Now, consider a term structure of interest rates in the Lucas Asset Pricing Model. For
simplicity, assume that there are 1 and 2 period bonds, the analysis can be readily
extended with the addition of longer period bonds. There are two strategies for the
household.
• Strategy 1: buy 1

P1,t
and receive payoff 1

P1,t
.

• Strategy 2: buy 1
P2,t

and receive payoff 1
P2,t

P1,t+1.

It is assumed that there is no arbitrage

1

P1,t
=

1

P2,t
P1,t+1.

It follows that
P2,t = P1,tP1,t+1

R−1
2,t = R−1

1,tR
−1
1,t+1

R2,t = R1,t Et[R1,t+1].

The household’s optimization problem is

max
{Ct,Nt,Lt}

E0

∞∑
t=0

βtu(Ct)

s. t. Ct + PtNt +R−1
1,tL1,t +R−1

2,tL2,t = (Pt + yt)Nt−1 + L1,t−1 +R−1
1,tL2,t−1.
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The first order conditions are

u′(Ct)− λt = 0

−Ptλt + β Et λt+1(Pt+1 + yt+1) = 0

−R−1
1,tλt + β Et λt+1 = 0

−R−1
2,tλt + β EtR−1

1,t+1λt+1 = 0.

The Euler equations is

R−1
2,t = β EtR−1

1,t

[
u′(yt+1)

u′(yt)

]
or

R−1
2,t = β EtR−1

1,t Et
[
u′(yt+1)

u′(yt)

]
+ βcovt

[
R−1

1,t+1,
u′(yt+1)

u′(yt)

]
.

Note that the price of a 1–period bond is

R−1
1,t = β Et

[
u′(yt+1)

u′(yt)

]
.

Thus the price of a 2–period bond is,

R−1
2,t = R−1

1,t EtR
−1
1,t+1

Expectations hypothesis.

+ βcovt

[
R−1

1,t+1,
u′(yt+1)

u′(yt)

]

Risk Premium.

If the covt < 0, then the price of a 1–period bond is positively correlated with consump-
tion growth. This pushes price down on a 2–year bond and increases the return, because
of the bond–price risk.

2.3.5. The Equity Premium Puzzle

In the United States, as a rough estimate, the average rate of return on a bond is

rUS,t+1 ≈ 6%.

Let
1 + ri,t+1 ≡ Ri,t+1,

with Euler equations

1 = β Et
[
(1 + ri,t+1)

u′(ct+1)

u′(ct)

]
,

for i = s, b. This may represent two different equities, such as a stock, s, and a bond, b.
Assume that consumption growth is given by

ct+1

ct
= c∆exp

(
εc,t+1 −

σ2
c

2

)
,

where log(εc) ∼ N (0, σ2
c ). If you also assume C.R.R.A. utility, then

1 + ri,t+1 = (1 + ri)exp

(
εi,t+1 −

σ2
i

2

)
,
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where log(εi) ∼ N (0, σ2
i ) for i = s, b. Note that if x is log–normally distributed then

E[x] = exp(µ+ σ2

2 ). Therefore,

E
[
ct+1

ct

]
= c∆ exp

(
0 +

σ2
c

2
− σ2

c

2

)
= c∆.

It follows that

1 = β(1 + ri)c
−γ
∆ E

[
exp

(
εi,t+1 −

σ2
i

2
− γ
(
εc,t+1 −

σ2
c

2

))]
.

Thus εi,t+1 − γεc,t+1 is log–normally distributed and

E[εi,t+1 − γεc,t+1] = 0

Var[εi,t+1 − γεc,t+1] = σ2
i − 2γCov(εi, εc) + γ2σ2

c .

It follows that

1 = β(1 + ri)c
−γ
∆ exp

(
σ2
i

2
− γCov(εi, εc) +

γ2σ2
c

2
− σ2

i

2
+ γ

σ2
c

2

)
1 = β(1 + ri)c

−γ
∆ exp

(
(1 + γ)

γσ2
c

2
− γCov(εi, εc)

)
.

If you take the natural logarithm of both sides, then

0 = log β + log(1 + ri)− γ log(c∆) + (1 + γ)
γσ2

c

2
− γCov(εi, εc).

You can now find that

log(1 + rs)− log(1 + rb) = γCov(εs, εc)− γCov(εb, εc).

So,
rs − rb

Equity Premium

≈ γCov(εs, εc)

Risk Premium

,

because empirically γCov(εb, εc) ≈ 0. Thus, the equity premium for holding stocks, s,
versus bonds, b, increases with Cov(εs, εc).
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2.3.6. Arrow–Debreu Securities

The framework is a representative agent structure. There are a finite number of people,
i = 1, 2, . . . , I. There is an idiosyncratic endowment process, yi,t(st), that depends on
the state at a given time st.
• The state, st, is exogenous with finite values in set S (i.e. st is a Markov process).
• There is a history St = [s0, . . . , st].
• E[St] = πt(St).
• E[St|Sv] = πt(St|Sv).

Furthermore, feasible allocations must satisfy

I∑
i=1

ci,t(St) =

I∑
i=1

yi,t(St).

In the initial period, t = 0, the agents trade state–contingent consumption contracts.
Each contract is a claim to 1 unit of consumption at time t contingent on being in state
st. The price of a contract is

q0
t (st).

The superscript denotes the date the contracts are traded and the subscript denotes the
date when the goods are delivered. Agent i’s expected life time utility is

U = E0

∞∑
t=0

βtu(ci,t(st)),

where ci,t(st) is the agent’s consumption at time t at node st. The consumer’s optimiza-
tion problem is

max
{ci,t(st)}

U =

∞∑
t=0

S∑
s

βtu(ci,t(st))πt(st)

s. t.
∞∑
t=0

S∑
s

q0
t (st)ci,t(st) =

∞∑
t=0

S∑
s

q0
t (st)yi,t(st),

where πt is the unconditional probability of history st. The Lagrangian for the con-
sumer’s problem is

L =

∞∑
t=0

S∑
s

[βtu(ci,t(st))πt(st)− µiq0
t (st)(ci,t(st)− yi,t(st))],

where µi is the multiplier on the consumer’s lifetime budget constraint. The first–order
conditions are

∂L

∂ci,t(st)
= βtu′(ci,t(st))πt(st)− µiq0

t (st) = 0,

for all t. If you combine the first–order conditions for agent i and j, then

u′(ci,t(st))

u′(cj,t(st))
=
µi
µj
.

if you set j = 1 and solve for ci,t(st), then

ci,t(st) = u′
−1
(
u′(c1,t(st))

µi
µ1

)
.
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A feasible allocation must satisfy

I∑
i=1

ci,t(st) =
I∑
i=1

yi,t(st).

Therefore,
I∑
i=1

u′
−1
(
u′(c1,t(st))

µi
µ1

)
=

I∑
i=1

yi,t(st),

where
∑I

i=1 yi,t(st) is the aggregate endowment. You can now note that agent 1’s con-
sumption is a constant fraction of the aggregate endowment. Furthermore, agent i’s
consumption is a constant fraction of agent 1’s consumption and thus a function of the
aggregate endowment.

Now consider a framework with a social planner. The planner’s optimization problem
for is

max
{ct(st)}

U =
∞∑
t=0

S∑
s

[ I∑
i=1

λiβ
tu(ci,t(st))πt(st)− θt(st)(ci,t(st)− yi,t(st))

]
,

where λi is the Pareto weight on consumer i and θt(st) is the multiplier on the feasibility
constraint. Note that θt(st) measures the shadow value of an additional unit of aggregate
endowment. The first–order condition are

∂L

∂ci,t(st)
= λiβ

tu′(ci,t(st))πt(st)− θt(st) = 0,

for all t and i. Note that the social planner’s problem has the same first order conditions
as the consumer’s problem if

λi = µ−1
i

θt(st) = q0
t (st).

There are three major results.

1. The Pareto weight, λi, for agent i is inversely related to agent i’s marginal utility
of consumption. A high multiplier, µi, in the consumer’s problem implies high
marginal utility and low optimal consumption, thus a low Pareto weight, λi, for
an equivalent allocation when there is a social planner.

2. The consumption contract prices, q0
t (st), equal the shadow value of aggregate en-

dowment, θt(st). Thus, the economy satisfies the Second Welfare Theorem: out
of all possible Pareto optimal outcomes, one can achieve any particular one by
enacting a lump–sum wealth redistribution and then letting the market take over.
Note that this requires a price at every node, st, and therefore a complete market.

3. Each agent i’s consumption is a constant fraction of the aggregate endowment and
the fraction is independent of any particular realized income history, yi,t(st). This
result is known as risk–sharing, because although consumption remains a constant
fraction of aggregate endowment, absolute consumption for all agents increases
and decreases with the idiosyncratic aggregate endowment.

In conclusion, the Arrow-Debreu securities model is a complete market that provides
full insurance against idiosyncratic risk.
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Example: Arrow–Debreu Securities with No Aggregate Uncertainty
Consider an Arrow-Debreu securities market with two agents, I = 2, that have idiosyn-
cratic endowments

y1,t = st

y2,t = 1− st,

where st ∈ {0, 1}. Note that the aggreate endowment is

2∑
i=1

yi,t(st) = 1.

You can deduce from the feasibility constraint that

2∑
i=1

u′
−1
(
u′(c1,t(st))

µi
µ1

)
=

2∑
i=1

yi,t(st) = 1.

Thus, agent i’s consumption is constant across dates and states

ci,t(st) = ci.

The Euler equation for agent i is

q0
t =

βtu′(ci)πt(st)

µi
.

The budget constraint of agent i is

∞∑
t=0

S∑
s

q0
t (st)[ci,t(st)− yi,t(st)] = 0.

It follows that

∞∑
t=0

S∑
s

βtu′(ci)πt(st)

µi
[ci − yi,t(st)] = 0

u′(ci)

µi

( ∞∑
t=0

S∑
s

βtπt(st)[ci − yi,t(st)]
)

= 0

∞∑
t=0

βt
S∑
s

πt(st)ci =

∞∑
t=0

S∑
s

βtyi,t(st)πt(st)

1

1− β
(1)ci =

∞∑
t=0

S∑
s

βtyi,t(st)πt(st)

because
∑S

s πt(st) = 1. Thus,

ci = (1− β)
∞∑
t=0

S∑
s

βtyi,t(st)πt(st)

Discounted expected
lifetime income

.

You can note that each agent smooths her consumption across dates and states, thus
insured against the risk from the idiosyncratic income stream.
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2.3.7. Economies with Incomplete Financial Markets

Consider a household that chooses consumption and savings with known endowments,
{yt}. The household may hold 1–period bonds, bt, with a fixed rate of return, R > 1.
Assume that βR = 1 or R = β−1. Also assume that the household as an initial holding
of bonds, b0. Note that if bt < 0, then the household is in debt. The household’s problem
is

max
{ct,bt+1}

U =
∞∑
t=0

βtu(ct)

s. t. ct +R−1bt+1 ≤ yt + bt.

Now consider possible debt limits that the household may face. A no–borrowing con-
straint states that bt ≥ 0. A natural debt limit is a maximum that can be borrowed and
repaid

bt ≥ −
∞∑
j=0

R−jyt+j ≡ b̃.

A no–Ponzi–game condition states

lim
T→∞

R−T bt+T = 0.

Example: The Household’s Problem with a No–Borrowing Constraint
The Lagrangian for the household’s problem is

L =

∞∑
t=0

βtu(ct)− λt(ct +R−1bt+1 − yt − bt) + µtbt+1.

The first–order conditions are

∂L

∂ct
= u′(ct)− λt = 0

∂L

∂ct
= −R−1λt + βλt+1 + µt = 0

∂L

∂λt
= ct +R−1bt+1 ≤ yt + bt

∂L

∂µt
= bt+1 ≥ 0.

Note that

bt+1 > 0⇔ µt = 0

bt+1 = 0⇔ µt > 0,

and

ct +R−1bt+1 < yt + bt ⇔ λt = 0

ct +R−1bt+1 = yt + bt ⇔ λt > 0.

The Euler equation is
u′(ct) = βRu′(ct+1) +Rµt.

There are two potential cases.
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(1) If µt = 0, then bt+1 > 0 and there is perfect consumption smoothing

u′(ct) = u′(ct+1)

ct = ct+1 = c.

(2) If µt > 0, then bt+1 = 0 and the household is unable to shift consumption to the
present as it is desirable to do

u′(ct) > u′(ct+1)

ct < ct+1.

Thus, the household will set ct = yt until

xt ≡
∞∑
j=t

βj−tyj

is at its largest value, then ct = c for the rest of the household’s lifetime.

Example: A No–Borrowing Constraint with Idiosyncratic Endowment Stream
Consider a household that receives income, yi, that alternates between a high and low
state, yi ∈ {yH , yL}. Suppose that the household receives a random income stream

yt = {yH , yL, . . . },

where yH > yL. Then discounted expected lifetime income is

x0 = yH + βyL + β2yH + · · · = yH + βyL
1− β2

x1 = yL + βyH + β2yL + · · · = yL + βyH
1− β2

.

It follows that

c

1− β
=
yH + βyL

1− β2

c =
yH + βyL

1 + β
.

From the budget constraint and the assumption that R = β−1 and b0 = 0, you can find
the household’s holding of bonds

b1 = R

(
yH − b0 −

yH + βyL
1 + β

)
b1 = β−1

(
βyH − βyL

1 + β

)
b1 =

yH − yL
1 + β

> 0

and

b2 = β−1

(
yL + b1 −

yH + βyL
1 + β

)
b2 = β−1

(
yL +

yH − YL
1 + β

− yH + βyL
1 + β

)
b2 = β−1

(
yL + βyL + yH − yL − yH − βyL

1 + β

)
b2 = 0.
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Suppose instead that the household receives a random income stream

yt = {yL, yH , . . . }.

Then discounted expected lifetime income is

x0 = yL + βyH + β2yL + · · · = yL + βyH
1− β2

x1 = yH + βyL + β2yH + · · · = yH + βyL
1− β2

.

The household would like to borrow

b∗1 =
yL − yH

1 + β
< 0,

but there is a no–borrowing constraint. Therefore,

c0 = yL

b1 = 0,

and the household can begin smoothing consumption starting in the subsequent period

c1 = c

b2 =
yH − yL

1 + β
> 0.

The general result is cautionary savings where if the endowment stream is random and
it is possible to realize an income that results in a binding no–borrowing constraint, then
the household saves against those states. In equilibrium, there will be more savings and
therefore a lower interest rate than when there are complete markets.
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2.4. Applications of Dynamic Economics

For an introduction to applications of dynamic economics and quantitative methods used
by modern macroeconomists, consider the general dynamic optimization problem

max
{ut}∞t=0

U =
∞∑
t=0

βtr(xt, ut)

s. t. xt+1 = g(xt)

x(0) = x0.

You can formulate the problem using a value function

V (x) = max
u

r(x, u) + βV (x′)

s. t. x′ = g(x),

where r(x, u) is the return function, u is a control variable, x is a state variable, and
g(x) is a state–transition equation.

Theorem: Contraction Mapping Theorem

Vj+1(x) = max
u

r(x, u) + βVj(x
′)

Vj+1(x) ≡ T jVj(x),

where T is an operator. The solution is a fixed point such that

V (x) = TV (x).

Finding the solution to a value function is known as iterating on the Bellman equation.

Theorem: Principle of Optimality
The solution to the sequence problem and the Bellman equation are equivalent.

Example: A consumer has an initial stock, w0, of a good to consumer over her lifetime.
Consider a value function

VT (w1) =
T∑
t=1

βt−1u(c∗t ).

It follows that

VT+1(w0) =

T∑
t=0

βtu(ct)

VT+1(w0) = u(c0) + β

T∑
t=1

βt−1u(ct)

VT+1(w0) = max
c0,w1

u(c0) + βVT (w1),

subject to w1 = w0 − c0. By substitution, you can find

VT+1(w0) = max
w1

u(w0 − w1) + βVT (w1).

The first–order condition is

−u′(w0 − w1) + βV ′T (w1) = 0.
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Note that

VT (w1) = u(c1) + βu(c2) + . . .

VT (w1) = u(w1 − w2) + βu(w2 − w3) + . . .

Thus, Returning to the first–order condition, from the envelope theorem you can find
that

−u′(w0 − w1) + β(c1) = 0.

So,

u′(w0 − w1) = βu′(w1 − w2)

u′(c0) = βu′(c1).

2.4.1. The McCall Search Model

Consider a worker that is searching for employment. Each period the worker is offered a
wage, w ∈ [0, B], that may be accepted or rejected. If the worker accepts the offer, then
the worker works at the wage, w, for perpetuity. If the worker rejects the offer, then the
worker receives unemployment benefits, c, for the current period and receives another
offer in the subsequent period. The value function for the unemployed worker is

V (w) = max
{accept, reject}

{
w

1− β
, c+ β

∫ B

0
V (w′) dF (w′)

}
.

Define the reservation wage, w, to be the wage where the worker is indifferent between
accepting and rejecting the wage offer. At the reservation wage, w, the value of accepting
an offer and the value of rejecting an offer are equal

w

1− β
= c+ β

∫ B

0
V (w′) dF (w′).

It follows that

w

1− β

[ ∫ w

0
(1) dF (w′) +

∫ B

w
(1) dF (w′)

]
= c+ β

∫ w

0

w

1− β
dF (w′) + β

∫ B

w

w′

1− β
dF (w′)

w

∫ w

0
(1) dF (w′)+w

∫ B

w
(1) dF (w′) = c+

1

1− β

∫ B

w
(βw′−w) dF (w′)+w

∫ B

w

w′

1− β
dF (w′)

w − c =
β

1− β

∫ B

w
w′ dF (w′)− w

1− β

∫ B

w
(1) dF (w′) +

(1− β)w

1− β

∫ B

w
(1) dF (w′)

w − c =
β

1− β

∫ B

w
w′ dF (w′)− βw

∫ β

w
(1) dF (w′)

You can deduce that the opportunity cost of searching is equal to the gain to searching
for a wage above the reservation wage, w,

w − c

Opportunity cost
of searching

=
β

1− β

∫ B

w
(w′ − w) dF (w′)

Gain to searching
for a wage above w

≡ h(w).
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Note that the gain to searching for a wage above w as a function of w is decreasing at
a decreasing rate

h′(w) < 0

h′′(w) < 0,

and

h(0) =
β

1− β
E[w]

h(B) = 0.

ii - 22



2.4.2. A Finite Horizon Dynamic Cake Eating Problem

Consider a fat kid who is endowed with a cake of size W at time t = 1, who has a finite
time, t = 1, . . . , T , to eat the cake. The flow of utility is u(ct), where

u′(ct) > 0

u′′(ct) < 0

lim
ct→0

u′(ct) =∞

lim
ct→∞

u′(ct) = 0.

The lifetime utility is

U =
T∑
t=1

βt−1u(ct),

where there is a discount factor 0 < β < 1. The resource constraint is

Wt+1 = Wt − ct.

The sequence problem is

max
{ct,Wt+1}Tt=1

U =
T∑
t=1

βt−1u(ct)

s. t. Wt+1 = Wt − ct.

Note that the resource constraint implies

WT+1 = WT − cT
WT = WT+1 + cT

WT = WT−1 − cT−1

WT−1 = WT+1 + cT + cT−1

...

W1 = WT+1 +

T∑
t=1

ct

Therefore, the Lagrangian can be written as

L =
T∑
t=1

βt−1u(ct)− λ
(
WT+1 −W1 +

T∑
t=1

ct

)
+ φWT+1,

where λ is the multiplier on the resource constraint and represents the shadow value
to loosing the constraint, and φ is the multiplier on the terminal inequality constraint.
Note that W1 is given and if

WT+1 > 0⇔ φ = 0.

The first–order conditions are

∂L

∂ct
= βt−1u′(ct)− λ = 0

∂L

∂WT+1
= −λ+ φ = 0,
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for t = 1, . . . , T . Note that if there is consumption, ct > 0, then

βt−1u′(ct) = λ > 0.

Therefore, the multiplier on the terminal inequality constraint is positive

φ = λ > 0,

and all the cake is consumed in the finite time, T ,

WT+1 = 0.

You can find that
βt−1u′(ct) = βtu′(ct+1),

for t = 1, . . . , T − 1. Thus, the Euler equation is

u′(ct) = βu′(ct+1).

Given a function form for utility, you can solve T − 1 Euler equations and the budget
constraint, W1 =

∑T
t=1 ct, to find the optimal consumption plan.

2.4.3. An Infinite Horizon Dynamic Cake Eating Problem

Consider a fat kid who is endowed with a cake of size W in an initial period t = 0, who
has infinite time to eat the cake. The optimization problem is

max
{ct,Wt+1}Tt=1

U =
∞∑
t=0

βtu(ct)

s. t. Wt+1 = Wt − ct
W (0) = W0.

The Bellman equation for the problem is

V (W ) = max
{c,W}

u(c) + βV (W ′)

s. t. W ′ = W − c,

where W is the state variable and c is the control variable. You can now solve the
Bellman equation by finding the first–order condition

−u′(c) + βV ′(w′) = 0,

and using the envelope theorem after noting

V (W ) = u(W −W ′) + βV (W ′)

∂V (W )

∂W
= V ′(W ) = u′(W −W ′) = u′(c).

You can then find the Euler equation to be

u′(c) = βu′(c′).

The solution is
c = g(W ),
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and you solve for g(W ) from noting

u′(g(W )) = βu′(g(W ′))

u′(g(W )) = βu′(g(W − g(W ))).

Suppose that you think that utility is logarithmic. You can use the method of undeter-
mined coefficients to solve for g(W ). You can then make a good guess for the functional
form of the value function

V (W ) = A+B ln(W ).

You can then plug the guess into the Bellman equation

V (W ) = max
W ′

ln(W −W ′) + β(A+B ln(W ′)).

The Euler equation is
1

W −W ′
=
βB

W ′
.

You can then solve for the optimal state transition

W ′ = βB(W −W ′)
W ′ + βBW ′ = βbW

W ′(1 + βB) = βBW

W ′ =
βBW

1 + βB
.

Optimal consumption is given by

c = W −W ′

c = W − βBW

1 + βB

c =

(
1− βB

1 + βB

)
W

c =

(
1 + βB

1 + βB
− βB

1 + βB

)
W

c =
1

1 + βB
W.

You can now solve for the parameters by substituting the optimal consumption and state
transition into the Bellman equation

A+B ln(W ) = ln

(
1

1 + βB
W

)
+ β

(
A+B ln

(
βBW

1 + βB

)
A+B ln(W ) = ln

(
1

1 + βB

)
+ ln(W ) + βA+ βB ln

(
βB

1 + βB

)
+ βB ln(w).

Notice that it is implied

A = ln

(
1

1 + βB

)
+ βA+ βB ln

(
βB

1 + βB

)
B = 1 + βB.
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You can now solve for the parameters and note that

B(1− β) = 1

B =
1

1− β
.

You can substitute the parameter into the policy equation to find

c =
1

1 + βB
W

c =
1

1 + β 1
1−β

W

c =
1

1−β
1−β + β

1−β
W

c =
1
1

1−β
W.

Thus the optimal policy function for consumption is

g(W ) ≡ (1− β)W.
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Quarter III
“It is useless, after all, to complain against inexorable reality.”

– Jack Vance, Cugel’s Saga

The goal of this section is to cover topics in Macroeconomics that every economics
graduate student should know. The two main topics covered are are vector autoregres-
sions (VARs) and New Keynesian Dynamic Stochastic General Equilibrium models (NK
DSGE models).

3.1. Reduced-Form and Structural Vector Autoregressions

Reading: Stock, James, and Mark Watson (2001). “Vector Autoregressions,” Journal
of Economic Perspectives 15, 101-115.

The advantages to VAR models are that they are atheoretical, flexible, and can fit any
frequency data. The major pitfall to VAR models is overfitting the model with regressors.

3.1.1. Reduced–Form Vector Autoregressions

Assume a system of linear equations for output, y, inflation, π, and the interest rate, i,

yt = αy + · · ·+ βjyt−j + · · ·+ γjπt−j + · · ·+ δjit−j + µyt

πt = απ + · · ·+ θjyt−j + · · ·+ φjπt−j + · · ·+ λjit−j + µπt

it = αi + · · ·+ ψjyt−j + · · ·+ κjπt−j + · · ·+ ρjit−j + µit,

that can be written in matrix form as yt
πt
it

 =

 αy
απ
αi

+A1

 yt−1

πt−1

it−1

+ · · ·+Aj

 yt−j
πt−j
it−j

+

 µyt
µπt
µit

 .

Let
A(L) = A0 +A1L+A2L

2 + · · ·+AkL
k,

where
Ljxt ≡ xt−j .

Then a reduced–form vector autoregression (VAR) is written

~xt = ~α+A(L)~xt−1 + ~µt,

where A is a n× k matrix of scalar lag polynomials of any number of lags k.

You can estimate
yt = xt~β + µt,

where

xt = [1 . . . yt−k . . . πt−k . . . it−k]

~β ′ = [αyβ1 . . . βk . . . αzλ1 . . . λk].

by OLS
β̂ = (x′x)−1x′y.

The estimates are consistent, but biased because µt is not independent of xt.
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Proof. Note that

β̂ = (x′x)−1x′(xβ + µ)

β̂ = β + (x′x)−1x′µ

E[β̂] = β + E[(x′x)−1x′µ]

plim
T→∞

β̂ = β + plim
T→∞

(x′x)−1x′µ

plim
T→∞

β̂ = β + plim
T→∞

(x
′x
T )−1 plim

T→∞
(x
′µ
T ),

and

1
T x
′x = 1

T

T∑
t=0

x′txt
Pr→ Q.

Thus, the estimates are biased. However,

1
T x
′µ = 1

T

T∑
t=0

x′tµt
Pr→ 0.

So,

plim
T→∞

β̂ = β +Q−1(0)

plim
T→∞

β̂ = β.

Therefore, the estimates are consistent. �

Sims, Stock, and Watson (1990) show that coefficients in VAR models with nonstationary
variables are consistent as long as the test statistic is not solely based on nonstationary
variables. Also, note that the bias is larger for higher order VAR models. The variance
of µt is V[µt] = Ω. However, typically, corr(µit, µ

y
t ) 6= 0.

Example: Forecasting with a Reduced–Form Vector Autoregression
Consider the reduced–form model VAR(1) model of output, y, inflation, π, and the
interest rate, i,  yt

πt
it

 = ~α+A(L)

 yt−1

πt−1

it−1

+ ~µt.

The expected value of the next period is

Et

 yt+1

πt+1

it+1

 = Et

[
~α+A(L)

 yt
πt
it

+ ~µt+1

]

Et

 yt+1

πt+1

it+1

 = ~α+A(L)

 yt
πt
it

+ Et ~µt+1.

The exogenous shock cannot be explained, Et[~µt+1] = 0. Then

Et

 yt+1

πt+1

it+1

 = ~α+A(L)

 yt
πt
it

 .

The best forecast leaves only the exogenous shock unexplained. You can then use the
forecast the next period and repeat iteratively.
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3.1.2. Structural Vector Autoregressions

Now, consider a structural vector autoregression representation

~xt = ~α+B(L)~xt−1 + S~εt.

For the system of linear equations for output, y, inflation, π, and the interest rate, i, the
structural VAR is  yt

πt
it

 = ~α+B(L)

 yt−1

πt−1

it−1

+
(
S
) εyt

επt
εit

 .

If

V
(
~εt
)

=

 1 0 0
0 1 0
0 0 1

 ,

then
S · ~εt = ~µt.

Note that

V[~µ]t = S · V[~εt] · S′

Ωµ = SΩεS
′

Ωµ = SS′,

and the reduced–form VAR does not identify S. If S has 9 elements, then Ωµ needs 6
restrictions.

Let S◦ satisfy S◦S
′
◦ = Ωµ and let U be any 3 × 3 orthogonal matrix (rotation matrix).

Then

(S◦U
′) · (S◦U ′)′ = S◦U · U · S′◦

(S◦U
′) · (S◦U ′)′ = S◦S

′
◦

(S◦U
′) · (S◦U ′)′ = Ωµ
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3.2. Methods of Identifying Structural VARs

Reading: Christiano, Lawrence, Martin Eichenbaum, and Charles Evans (1999). “Mon-
etary Policy Shocks: What Have We Learned and to What End?” Handbook of Macroe-
conomics 1, 65-148.

3.2.1. Recursive Identification

Suppose that inflation, πt, is a slow variable and cannot respond within a month to
changes in output, yt, or interest rate, it. Suppose that output, yt, can only respond
to inflation, πt. Suppose that the interest rate, it, is a fast variable and can respond to
changes in inflation, πt, and output, yt. You can implement a recursive identification of
S by writing the system as

~xt = ~α+B(L)~xt−1 + S~εt

S−1~xt = S−1~α+ S−1B(L)~xt−1 + ~εt

S−1~xt − S−1B(L)~xt−1 = S−1~α+ ~εt

S−1~xt − S−1B0~xt−1 − · · · − S−1Bk−1~xt−k = S−1~α+ ~εt

A(L)~xt = ~γ + ~εt,

where
A(L) = A0 +A1L+ · · ·+AkL

k.

It follows that

A0 = S−1

A1 = −S−1B0 = −A0B0

Ak = −S−1Bk−1 = −A0Bk−1,

and you can write the system as

A0

 πt
yt
it

 = ~γ + (A1L+ · · ·+AkL
k)

 πt
yt
it

+ ~εt.

Note that if A0 is lower triangular, then S is lower triangular from Cramer’s rule for
inverse matrices. The assumptions that inflation is a slow variable, output responds only
to the interest rate, and the interest rate is a fast variable allow the system to be written
as  a 0 0

e f 0
b c d

 πt
yt
it

 = ~γ + (A1 +A2L+A3L
2 + · · ·+AkL

k−1)

 πt−1

yt−1

it−1

+ ~εt.

Furthermore,
S = A−1

0 .

You can now perform a Cholesky decomposition of Ωµ to obtain an unique lower trian-
gular matrix such that

SS′ = Ωµ.

Through Gaussian elimination
LΩµ = U,
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if the determinant of the principle diagonals is not zero. The inverse of L is also trian-
gular, so

Ωµ = L−1U.

If Ωµ is symmetric, then

Ω′µ = (L−1U)′ = U ′L−1′.

Because Ω′µ = Ωµ

L−1′ = U

U ′ = L−1.

Thus,
Ωµ = SS′,

where S is an unique lower triangular matrix.

Example: Block Recursive Identification
Suppose that you cannot fully identify S, but you can identify the effects of monetary
policy shocks. That is, S is not lower triangular. Then A0 is block lower triangular if
and only if S is block lower triangular. For example, consider

S =

 s11 s12 0
s21 s22 0
s31 s32 s33

 .

The impact effect of a monetary policy shock is

~µt = S~εt

~µt = S

 0
0
1


~µt = ~S3.

Up to scale, ~S3 is identified. Typically, analysis is performed for a x% shock. For
example, a 0.25% shock to the interest rate is

~εt =

 0
0

0.25
s33

 ,

and s33 drops out.

Note that if the shock to the fast variable is all that you are interested in, then in
practice you can estimate impulse response functions using any fully recursive ordering
by utilizing a Cholesky decomposition.
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3.2.2. Long-Run Restrictions

Reading: Blanchard, Olivier, and Danny Quah (1989). “The Dynamic Effects of Ag-
gregate Demand and Supply Disturbances,” American Economic Review 79, 655-673.

Reading: Gaĺı , Jordi (1999). “Technology, Employment, and the Business Cycle: Do
Technology Shocks Explain Aggregate Fluctuations?” American Economic Review 89,
249-271.

If you are interested in aggregate demand and aggregate supply shocks, then you may
consider a VAR model with the growth in GDP, ∆ log y, and unemployment, u. You
can write the model as(

∆ log yt
ut

)
= ~α+B(L)

(
∆ log yt−1

ut−1

)
+ ~νt,

where
~νt = S~εt.

Note that S is a 2 × 2 matrix that needs 3 identifying restrictions to identify the non–
duplicate elements of Ων such that

SS′ = Ωnu.

You must use a stationary VAR model. You can then invert the VAR so that(
∆ log yt
ut

)
= ~γ + ~νt + C1~νt−1 + . . . ,

where ~Vt = S~εt. You can limit the long–run effect on ~εt so that(
∆ log yt
ut

)
= lim

j→∞
CjS = 0.

As t→∞, then

log yt =

∞∑
j=1

(∆ log yt+j)

log yt =
(

1 0
) ∞∑
j=1

CjS~εt.

The identifying assumption is that the long–run effect of the aggregate demand shock,
εd,t, on the growth in GDP, ∆ log yt, is 0. Thus, the fourth restriction on S is that

(
1 0

) ∞∑
j=1

CjS

(
1
0

)
= 0.
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Example: Suppose that you are interested in the growth rate of labor productivity, xt,
and labor hours, nt. You can write a reduced–form VAR as(

∆ log xt
∆ log nt

)
= ~α+B(L)

(
∆ log xt−1

∆ log nt−1

)
+ ~µt,

where

~µt = S

(
εx,t
εn,t

)
.

The identifying assumption is that εn,t has no long–run effect on the level of hours
worked.

You can invert the VAR so that it can be written as(
∆ log xt
∆ log nt

)
= ~γ + S~εt + C1S~εt−1 + . . . .

It follows that

~xt = A~xt−1 + ~µt

(I −AL)~xt = ~µt

~xt = (I +AL+A2L2 + . . . )~µt.

Note that

log nt =
T∑
t=1

∆ log nt + log n0.

Assuming that there is no long–run effect of the shock, εn,t, on log nt, then

T∑
t=1

∆ log nt = 0 as t→∞.

The long–run restriction is

(
0 1

)( ∞∑
j=0

Cj

)
S

(
0
1

)
= 0,

where C0 = I. Thus, 1 additional linear restriction on S is provided by the identifying
assumption.

Faust and Leeper (1997) point out a caveat that the long–run effects of a VAR model are
not precisely estimated. This is because of the uncertainty of B(L) implies uncertainty
of long–run effects. Furthermore, identification of S is not robust even in large samples.
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3.2.3. Sign Restrictions

Reading: Uhlig, Harald (2005). “What Are the Effects of Monetary Policy on Output?
Results from an Agnostic Identification Procedure.” Journal of Monetary Economics
52, 381–419.

Reading: Baumeister, Christiane, and James Hamilton (2015). “Sign Restrictons,
Strucutral Vector Autoregressions, and Useful Prior Information,” Econometrica 83,
1963-1999.

Sign restrictions are priors for the direction of the effects produced by exogenous shocks.
Consider a uniform HAAR prior on µ. The prior is not flat over the elasticities in the
model. After the sign restrictions are imposed, the prior for µ is a truncated Cauchy
distribution. The Bayesian approach is to impose a prior on the coefficients, B(L), such
as a Minnesota prior.

Example: Consider the system

~xt = ~α+B(L)~xt−1 + S~εt,

that does not identify S in general. You can impose sign restrictions on the impulse
response function to identify some set S of admissible S matrices. For example

S = {S : SS′ = Ωµ; s13 ≤ 0},

where a two period sign restriction on the impulse response function implies

B0S13 ≤ 0.

Example: Set Identification
Suppose that you want to compute the IRF for every S ∈ S. To compute S, first draw
matrices S randomly such that SS′ = Ωµ. You can let C be the Cholesky factorization
of Ωµ such that C ′C = Ωµ. Let S = CU for some orthogonal matrix U , so,

SS′ = CUU ′C ′ = CC ′.

Note that if SS′ = Ωµ, then there exists a matrix U such that S = CU .

Proof.
SS′ = Ωµ = CC ′

S = CC ′(S′)−1

You can show that C ′(S′)−1 is orthogonal. That is

(C ′(S′)−1)′C ′(S′)−1 = I

((S′)−1)′CC ′(S′)−1 = I

S−1CC ′(S′)−1 = I

S−1Ωµ(S′)−1 = I

S−1Ωµ(S′)−1S−1S = I

S−1Ωµ(S′S)−1S = I

S−1Ωµ(Ωµ)−1S = I

S−1S = I.

�
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You can draw matrices U in a uniform way using a HAAR measure. First draw every
element of M randomly from a standard normal distribution. Then compute M = QR,
where Q is an orthogonal matrix.

3.2.4. External Instruments

Reading: Stock, James, and Mark Watson (2012). “Disentangling the Channels of the
2007-09 Recession,” Brookings Papers on Economic Activity, Spring, 81-135.

Reconsider the system
~xt = ~α+B(L)~xt−1 + S~εt,

that can be inverted and written as

A(L)~xt = ~γ + ~εt,

where A0 are simultaneous effects. It used to be common to use internal instruments to
estimate elements of S.

Example: Suppose that inflation, πt, is slow, output, yt, is of interest, and the interest
rate, it, is a fast variable. Then, µπ,t is independent of εi,t and εy,t. Note that

~µt = S~εt

µi,t = s31επ,t + s32εy,t + s33εi,t.

You can use an instrumental variable (IV) regression with µπ,t as an instrument to
estimate s31.

The next method is a narrative approach where you can identify exogenous shocks.
Let zt be any instrument for εj,t. This requires that the instrument is exogenous and
relevant.
• Exogeneity:

E[ztεk,t] = 0, where k 6= j.

• Relevance:
E[ztεj,t] 6= 0.

You can then regress µn,t on zt. This implies that the coefficient is

β =
E[µn,tzt]

Var[zt]

β =
E[sn~εtzt]

Var[zt]

β =
sn E[~εtzt]

Var[zt]

β =
sn(0 . . . θ . . . 0)′

Var[zt]

β =
θsnj

Var[zt]
.

Thus, the jth column of S is identified up to scale θ
Var[zt]

. Therefore, you can normalize

the scale so that you can consider the effects from an x% shock.
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3.2.5. High-Frequency Identification

Reading: Cochrane, John, and Monika Piazzesi (2002). “The Fed and Interest Rates:
A High-Frequency Identification,”American Economic Review 92, 90-95.

Reading: Fisher, Jonas, and Ryan Peters (2010). “Using Stock Returns to Identify
Government Spending Shocks,” Economic Journal 120, 414-436.

Reading: Gertler, Mark, and Peter Karadi (2015). “Monetary Policy Surprises, Credit
Costs, and Economic Activity,” American Economic Journal: Macroeconomics 7, 44-76.

Suppose that you look closely at the change in the interest rate, it, around Federal Open
Market Committee (FOMC) announcements. The high frequency response is correlated
with monthly εi,t, but not εi,t generally. That is, εi,t is the sum of all the effects and
shocks to the interest rate, it, over the month t. The instrument, zt, is the high frequency
response of the 1–year treasury bond yield to the FOMC announcement. The instrument
is relevant, E[ztεi,t] 6= 0, and exogenous, E[ztεk,t] = 0, where k 6= i. You can regress ~µt
on zt to estimate ~s3, if the interest rate, it is a fast variable.

3.2.6. Impulse Response Functions

Once you have identified S, then

~µt = S~εt =
(
~s1 ~s2 ~s3

) επ,t
εy,t
εi,t

 .

The impact effect of εi,t on ~xt is ~s3. Remember that

~xt = ~α+B(L)~xt−1 + S~εt.

The recursive assumption says that

~s3 =

 0
0
a

 .

The impact effect of εi,t on the interest rate it is a, the impact effect of εi,t on output
yt is 0, and the impact effect of εi,t on inflation πt is 0. If you want a x% interest rate
shock, then let εi,t = x

s33
.

Definition: Impulse Response Function
An impulse response function is the effect of a shock to ~xt after j periods

IRF(εt, j) = E[~xt+j |~xt−1, εt = (0 0 1)′]− E[~xt+j |~xt−1, ~εt = (0 0 0)′].

In this case,
~µt = S(0 0 1)′ = ~s3.

In general, the initial conditions in period t do not matter. The impulse response function
is S~εt in the period of the shock, B0S~εt in the second period, B1S~εt +B0(B0S~εt) in the
third period, and you can continue iteratively.

The caveats to estimating impulse response functions (IRFs) are that the recursive or-
dering is not always obvious, there are often more than one fast variables, data may
be released with a short frequency, slow variables are assumed not to respond within a
given period, and the structural shocks to slow variables are problematic.

iii - 10

https://core.ac.uk/download/files/153/6690707.pdf
https://core.ac.uk/download/files/153/6690707.pdf
http://www.econstor.eu/bitstream/10419/70485/1/608694061.pdf
http://www.econstor.eu/bitstream/10419/70485/1/608694061.pdf
http://www.stern.nyu.edu/sites/default/files/assets/documents/GertlerKaradi2014May20-2.pdf
http://www.stern.nyu.edu/sites/default/files/assets/documents/GertlerKaradi2014May20-2.pdf


3.2.7. Vector Autoregression Extensions

First–order Companion Form
You can rewrite any VAR(k) model as a VAR(1). For example, let

~xt = ~α+A(L)~xt−1 + ~µt,

where 
xt
...
...

xt−k+1


nk×1

=


α
0
...
0


nk×1

+


A0 · · · · · · Ak
I 0 · · · 0
...

. . .
. . .

...
0 · · · I 0


nk×nk


xt−1

...

...
xt−k


nk×1

.

The Invertability of an ARMA Process
Consider the process

a(L)yt = b(L)εt.

You can invert the process so that

yt = a(L)−1b(L)εt.

Consider the process
~zt = ~α+A~zt−1 + µt.

It follows that

(I −AL)~zt = ~α+ µt

~zt = (I −AL)−1(~α+ µt).

Note that
(I −AL)−1 = I +AL+ · · ·+A∞L∞.

This process converges if and only if all eigenvalues of A are less than 1 in absolute value.
Thus, any VAR can be written as a moving average process

~zt = (I +AL+ · · ·+A∞L∞)(~α+ µt)

~zt = (I +AL+ · · ·+A∞L∞)~α+ (I +AL+ · · ·+A∞L∞)~µt

~zt = (I −A)−1~α+ (I +AL+ · · ·+A∞L∞)~µt.
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The Lucas Critique: Reduced-form vs. Structural Models

Reading: Lucas, Robert (1976). ”Econometric Policy Evaluation: A Critique,” Carnegie-
Rochester Conference Series on Public Policy 1, 19-46.

Robert Lucas criticized reduced–form VAR models. The foundation for his argument
begins with the Phillip’s curve structural model

yt = y∗t + θ(Pt − P et ),

where P et is Et Pt. Suppose that

Pt − Pt−1 = π + εt,

where ε ∼ (0, σ2). Then
P et = Pt−1 + π.

It follows that the structural model is

yt = y∗t + θ(Pt − (Pt−1 + π))

yt = y∗t − θπ + θ(Pt − Pt−1)

yt = (y∗t − θπ) + θπt.

The reduced–form model is of the form

yt = α+ βπt.

An econometrician estimates β̂ = θ > 0, and argues that there is a positive effect of
inflation on output. However, according to the structural model, the effect is ambiguous
if if expectations for inflation, π, also change. Modern macroeconomics begins with the
assumption that agents are forward looking and form rational expectations of the future.
Any model can be subject to the Lucas critique if its parameters are not invariant to the
policy experiment being considered. This ultimately depends on the model and policy
being considered. The Lucas critique does not argue that the model must be necessarily
‘true’, however, the parameters should be invariant to the policy under consideration if
it is to provide reliable analysis.
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3.3. Heterogeneity

Reading: Krusell, Per, and Anthony Smith (1998). “Income and Wealth Heterogeneity
and the Macroeconomy,” Journal of Political Economy 106, 867-896.

Reading: Gourinchas, Pierre-Oliver, and Jonathan Parker (2002). “Consumption over
the Life Cycle,”Econometrica 70, 47-89.

3.3.1. The Existence of a Representative Firm

Suppose that there are n = 1, . . . , N heterogeneous firms.

Definition: Aggregate Production Function
Define an aggregate production function as

Y = F (K,L),

where total capital, K, total labor, L, and total output, Y , are given by

K =
N∑
n=1

kn L =
N∑
n=1

ln Y =
N∑
n=1

yn,

for firms n = 1, . . . , N with capital k1, . . . , kn, labor l1, . . . , ln, and output y1, . . . , yn
respectively. There does not exist an aggregate production function

F (K,L) =
N∑
n=1

yn,

unless all fn(k, l) are linear with the same slope.

Proof. Suppose that
∂fn
∂k
6= ∂fj

∂k
,

for some j 6= n. Also, let
∂fn
∂k

>
∂fj
∂k

.

Then it is possible to reallocate dk from j to n without changing aggregate capital, K,
but increasing aggregate output, Y . Continue until

∂fn
∂k

=
∂fj
∂k

,

for all j, n ∈ N and k ∈ K. Then it is also possible to reallocate dl from j to n until

∂fn
∂l

=
∂fj
∂l
,

for all j, n ∈ N and l ∈ L. Now, let

β =
∂fn
∂k

,

γ =
∂fn
∂l

.

Then it must be that
fn(k, l) = αn + βkn + γln.

�
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Let each firm n have production function fn(k, l) and profit functions πn(p, r, w), where
p is the price, r is the rental price of capital, and w is the wage rate of labor. If the
profit functions of the firms are homogeneous of degree 1, convex, monotonic in price,
p, and strictly decreasing in rental price, r, and wage rate, w, then there is an aggregate
profit function.

Definition: Aggregate Profit Function
Define an aggregate profit function as

π(p, r, w) =

N∑
i=1

πn(p, r, w).

Proof. From Hotelling’s Lemma, note that

∂πn
∂p

= yn,

∂πn
∂r

= −kn,

∂πn
∂w

= −ln.

You can check that

∂π

∂p
=

N∑
i=1

∂πn
∂p

=

N∑
i=1

yn = Y,

−∂π
∂r

= −
N∑
i=1

∂πn
∂r

=
N∑
i=1

kn = K,

− ∂π
∂w

= −
N∑
i=1

∂πn
∂w

=
N∑
i=1

ln = L.

Therefore, π(p, r, w) is an aggregate production function. �

Theorem: If and only if you have perfectly competitive markets, then you can have
perfect aggregation.

The conclusion is that the economy acts as if it is a single firm with profit function
π(p, r, w). You can then convert π(p, r, w) to the production function Y = F (k, L)
through duality.

Given competitive markets and profit maximization, you can show that the economy
behaves as if there is an aggregate production function with an aggregate production
possibilities set

Y =

{ N∑
i=1

yn : yn ∈ Yn
}
,

but this does not prove the existence of an aggregate production function.
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3.3.2. The Existence of a Representative Agent

Assume that there are commodities, n = 1, . . . , N , and households, h = 1, . . . ,H, with
utility, Un(~c). The households each demand ~ch(~p,m), where the houshold’s income is m,
commodities demanded are ~c ∈ Rn and the respective prices are ~p ∈ RN .

Definition: Aggregate Consumption Function
Define an aggregate consumption function as

~C(~p, {mh}Hh=1) =
H∑
h=1

~ch(~p,mh).

If you wish to restrict the distribution of {mh}Hh=1 so that you can represent aggregate

consumption as ~C(~p,M), where m =
∑H

h=1mh, then it must be that reallocations of
household income, m, do not affect consumption. It must be that

∂~ch(~p,m)

∂m
=
∂~cj
∂m

,

for all households, h, j ∈ H, and income levels, m. Thus, it must be that

∂~ch(~p,m)

∂m
= ~f(~p),

where the marginal propensity to consume, ~f(~p, is independent from household, h, and
income level, m. So, it must be that consumption of every good is linear in m and has
a linear Engel curve

~ch(~p,m) = ~g(~p) + ~f(~p)m.

Roy’s Identity implies that

~ch(~p,m) = − ∂Vh(~p,m)/∂~p

∂Vh(~p,m)/∂m
,

where Vh(~p,m) is the indirect utility function of household h. This implies that for an
aggregate consumption function to exist, you need

− ∂Vh(~p,m)/∂~p

∂Vh(~p,m)/∂m
= ~g(~p) + ~f(~p)m.

3.3.3. Gorman Aggregation

Definition: Representative Household
Heterogeneous agents act as if the economy is representative.

Theorem: The Gorman Theorem
Let

Vh(~p,m) = ah(~p) + b(~p)m.

Then ~ch(~p,m) is linear in income, m, and the economy behaves as if there is a represen-
tative agent.
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3.4. Balanced Growth and Real Business Cycles

Reading: King, Robert, Charles Plosser, and Sergio Rebelo (2002). “Production,
Growth, and Business Cycles: Technical Appendix,” Computational Economics 20, 87-
116.

3.4.1. Balanced Growth

You may notice that the trend in a countries GDP is pretty constant. An economy
is on a balanced growth path if output, Y , capital, K, labor, L, investment, I, and
consumption, C, grow at constant rates

γY =
Yt+1

Yt
, γI =

It+1

It
, γK =

Kt+1

Kt
, γC =

Ct+1

Ct
, γN =

Nt+1

Nt
.

Begin with the program of a representative household

max

∞∑
t=0

βtu(ct, lt)

s. t. kt+1 = (1 + rt)kt + wtnt − ct,

where ct is the consumption of the household, lt is leisure, and nt is labor. The repre-
sentative firm faces a constant returns to scale production function at each t

Yt = F (Kt, Nt, t)

s. t. Kt+1 = (1− δ)Kt + It.

The profit maximization program yields the real wage and real rate of capital

wt = MPLt

rt = MPKt − δ.

The resource constraints are

lt + nt = 1

Ct + It ≤ Yt
Ct, Lt, Nt,Kt ≥ 0.

The existience of a balanced growth path implies the following.
• F (Kt, Nt, t) = G(Kt, XtNt), where Xt grows at a constant rate γX .
• Output, Yt, investment, It, consumption, Ct, and capital, Kt grow at the same

rate
γY = γC = γI = γk = γλ.

• Household preferences, u(c, l), have a particular form.
The theoretical reasoning is as follows.

Kt+1 = (1− δ)Kt + It

Kt+1

Kt
= (1− δ) +

It
Kt

It
Kt

= γK − (1− δ).

Then γI = γK .
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Proof. Suppose that γI > γK , then It
Kt
→∞. Suppose that γI < γK , then It

Kt
→ 0. �

Note that Yt = Ct + It.

Proof. Suppose that γC 6= γI . If γC > γI , then It
Ct
→ 0. Suppose that γY = γC , so that

Yt
Ct
→ 1 and Ct

Yt
→ 1. More generally, γY = max{γC , γI} and It

Yt
→ 0. However, if you

want Ct
Yt
6= 0 and It

Yt
6= 0, then it must be that γY = γC = γI . Thus

γY = γC = γI = γK ,

and
Yt
Kt
, Ct
Kt
, It
Kt
, Ct
Yt
, It
Yt

are constant over time. �

Theorem: Technology must be labor augmenting.

Proof. Take production function

Yt = F (Kt, Nt, t).

Then
Yt
Kt

Constant

= F (1, NtKt , t)

Grows at rate
γN
γK

.

You can show that
F (1, NtKt , t) = G(1, Xt

Nt
Kt

).

Define G(K,N) = F (K,N, 0) for all K and N . Then by definition

G(1, NK ) = F (1, NK , 0).

By constant returns to scale,

G(1, NK ) = 1
KF (K,N, 0).

It follows that
G(1, NK ) = 1

KG(K,N),

so G(·) has constant returns to scale. At time t ≥ 0, then from constant returns to scale

F (1, NK , t) = 1
KF (K,N, t)

F (1, NK , t) = Y
K

Yt
Kt

= Y0
K0

F (1, NK , t) = G(K0,N0)
K0

F (1, NK , t) = G(1, N0
K0

)

F (1, NK , t) = G(1, NtKt (
γN
γK

)−t)

Nt = N0γ
t
N

Kt = K0γ
t
K

F (1, NK , t) = G(1, (γKγN )t NtKt ).
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Define Xt ≡ (γKγN )t and γX ≡ γK
γN
. It follows that

F (Kt, Nt, t) = KtF (1, NtKt , t)

F (Kt, Nt, t) = KtG(1, Xt
Nt
Kt

F (Kt, Nt, t) = G(Kt, XtNt)

G(K,N) = F (K,N, 0).

Note that XtNt
Kt

is constant and γK = γXγN . Also,

Y = F (K,XtN)

Yt = F (Kt, XtNt).

Let y ≡ Y
XN and k ≡ K

XN . Then by constant returns to scale

y = F (k, 1) = f(k).

The marginal product of capital is

∆F

∆K
=
F (K + ∆K,XN )− F (K,Xn)

∆K

∆F

∆K
=
XN (F (K+∆K

XN , 1)− F ( K
XN , 1))

∆K

∆F

∆K
=
F (k + ∆K

XN , 1)− F (k, 1)

( ∆K
XN )

∆F

∆K
=
F (k + h, 1)− F (k, 1)

h
.

Note that
∂f

∂k
=
∂F (k, 1)

∂k
=

df

dk
,

so

MPK =
∂f(k, 1)

∂k
= f ′(k),

and MPKt = f ′(kt) is constant over time because kt = Kt
XtNt

. From Euler’s identity and
constant returns to scale,

Yt = MPNtNt + MPKtKt

Yt = wtNt + MPKtKt

wtNt = Yt −MPKtKt.

So, the real wage is
wt = Yt

Nt
−MPKt

Kt
Nt

and grows at a constant rate. Furthermore,

γY
γN

=
γK
γN

= γX ,

so
γY = γC = γI = γK = γXγN .

Empirically, γN ≈ 1. Thus

γY = γC = γI = γK ≈ γX .

�
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Example: King, Plosser, and Rebelo’s Balanced Growth Model (1988)
The model begins with the program

max

T∑
t=0

βtu(c, l)

kt+1 = (1 + rt)kt + wtnt − ct
nt + lt = 1

The market clearing prices are

rt = MPKt − δ =
∂f(Kt, Xtnt)

∂Kt
− δ

wt = MPNt =
∂f(Kt, Xtnt

∂nt

Balanced growth implies the following
• The growth rates

γy = γK = γC = γI = γXγN ,

where γN ≈ 1.
• The production function F (Kt, Nt, t) = G(Kt, Xtnt) has constant returns to scale.
• Preferences, u(c, l), have a special functional form that are consistent with constant

relative risk aversion (CRRA).
The Lagrangian for this model is

L =

∞∑
t=0

βtu(ct, lt)−
∞∑
t=0

λt(kt+1 − (1 + rt)kt − wtnt + ct).

The first-order conditions are

∂L

∂ct
= βtuc(ct, lt)− λt = 0

∂L

∂lt
= βtul(ct, lt)− λtwt = 0

∂L

∂kt+1
= λt − Et(1 + rt+1)λt+1 = 0

The intertemporal Euler equation is

uc(ct, lt) = β Et(1 + rt+1)uc(ct+1, lt+1)

The intratemporal Euler equation is

ul(ct, lt)

uc(ct, lt)
= wt.

Note that the ratio of marginal utilities from consumption in two subsequent periods is
constant

uc(ct+1, lt+1)

uc(ct, lt)
=

1

β(1 + rt+1
≡ ξ.

So,
uc(γcct, lt) = ξuc(ct, lt)
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for all c in a neighborhood of ct. If you take the partial derivative with respect to
consumption, then

∂uc(γcct, lt)

∂ct
=
∂ξuc(ct, lt)

∂ct
γcucc(γcct, lt) = ξucc(ct, lt).

If you then impose a constant individual supply of labor l, then

uc(ct+1, l) = ξuc(ct, l).

It follows from taking the ratio of the previous equations that

γcucc(ct+1, l)

uc(ct+1, l)
=
ξucc(ct, l)

ξuc(ct, l)

ct+1ucc(ct+1, l)

uc(ct+1, l)
=
ctucc(ct, l)

uc(ct, l)
,

for all t = 0, 1, . . . . So, the coefficient of relative risk aversion is constant

ctucc(ct, l)

uc(ct, l)
= −σc.

If you now solve for uc, then

d log uc(ct, l)

dct
= −σc

d log uc(ct, l) = −σc
dct
ct
.

If you integrate both sides, then

log uc(ct, l) = −σc log(ct) + v(l)

uc(ct, l) = e−σc log(ct)ev(l)

uc(ct, l) = c−σct ev(l).

If you now solve for u, then

du(ct, l)

dct
= c−σct ev(l)

du(ct, l) = c−σct ev(l) dct.

If you now integrate both sides, then you find that there is a constant relative risk
aversion (CRRA) utility function

u(ct, l) =

{
c1−σct
1−σc ev1(l) + v2(l) if σc 6= 1,

log(ct)e
v1(l) + v2(l) if σc = 1.

Theorem: CRRA preferences satisfy the conditions for balanced growth.
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Proof. Recall that the intratemporal Euler equation is

ul(ct, lt)

uc(ct, lt)
= wt.

With CRRA preferences, then

ul(ct, lt) =
c1−σc
t

1− σc
v′1(l) + v′2(l)

uc(ct, lt) = c−σct v1(l).

It follows that
ct

1− σc

Grows at γc

v′1(l)

v1(l)

Constant

+ cσt

Grows at γσc

v′2(l)

v1(l)

Constant

= wt

Grows at γw=γc

.

In order for the above equation to hold on the balanced growth path, then it must be
that

v′2(l) = 0.

This implies that v2(l) is constant. So, preferences must be

u(ct, lt) =
c1−σc
t

1− σc
v1(l).

If σc = 1, then v1(l) is constant and v2(l) is unrestricted

u(ct, lt) = X log(ct) + v2(l).

�

Also, note that a linear utility function does not satisfy the balanced growth path3.

3 The linear utility function

u(ct, lt) =
c1−σt

1 − σ
+

(1 − lt)
1−X

1 −X

assumes that growth is constant. This abstracts from growth and does not satisfy the conditions of the
balanced growth path.
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3.4.2. Real Business Cycles

The following is a rough guide as to how to solve real business cycle (RBC) models.
You can extend the real business cycle model with fiscal policy shocks, monetary policy
shocks, investment–specific shocks, financial frictions, risk–premiums, open–economies,
and much more.

Consider an economy with a Cobb–Douglas production function and where the repre-
sentative agent has a CRRA utility function

Yt = ZtK
1−α
t (XtNt)

α

u(ct, lt) =
c1−σ
t

1− σ
l1−xt

1− x
.

1. The first step is to write the Lagrangian of the representative household

L =
∞∑
t=0

βt
[
u(ct, lt) + λ(kt+1 − (1 + rt)kt − wtnt + ct)

]
.

The first–order conditions are

c−σt
l1−xt

1− x
= λt

ct
1− σ

lt
1− x

= wt

β(1 + rt+1)λt+1 = λt

(1 + rt+1)kt + wtnt − ct = kt+1.

You can then find the real wage in the economy

wt = αZtK
1−α
t (XtNt)

α−1

wt = α
Yt
Nt
.

The marginal product of capital in the economy is

MPKt = (1− α)ZtK
−α
t (XtNt)

α

MPKt = (1− α)
Yt
Kt
.

So, the real rental rate of capital is

rt = MPKt − δ.

2. The next step is to solve for the nonstochastic steady–state. Note that the model as
is has a balanced growth path, so, to find a steady–state then you must transform
the model’s variables. Define

ỹt =
Yt
Xt
, c̃t =

Ct
Xt
, ĩt =

It
Xt
, k̃t =

Kt

Xt
.

You can then rewrite the first–order conditions. The normalized wage rate is

w̃t =
c̃t

1− σ
lt

1− x
.
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For the shadow price of capital

λt = c−σt
l1−xt

1− x
λt

X−σt
=

(
ct
Xt

)−σ l1−xt

1− x

Xσ
t λt = c̃−σt

l1−xt

1− x

λ̃t = c̃−σt
l1−xt

1− x
,

where λ̃t ≡ Xσ
t λt. Also,

λt = β(1 + rt+1)λt+1

Xσ
t λt = β(1 + rt+1)Xσ

t λt+1

λ̃t = β(1 + rt+1)
Xσ
t

Xσ
t+1

Xσ
t+1λt+1

λ̃t = β(1 + rt+1)γ−σX λ̃t+1.

Note that w̃, k̃, ỹ, and λ̃ are constant

w̃t = w̃t+1 = w̃

k̃t = k̃t+1 = k̃

ỹt = ỹt+1 = ỹ

λ̃t = λ̃t+1 = λ̃.

Notice that you can then find the steady–state real rate of return as a function of
exogenous parameters

β(1 + r)γ−σX λ̃ = λ̃

λ̃(1− β(1 + r)γ−σX ) = 0

β(1 + r)γ−σX = 1

1 + r =
γσX
β .

You can then use the motion of capital kt+1 = (1− δ)kt + yt− ct to solve for k. In
general, you can solve ỹ, c̃, ĩ, k̃, w̃, λ̃, r, n, etc.

3. The next step is to log–linearize each transformed equation around the nonstochas-
tic steady–state. A brief algorithm for log–linearizing an expression is given below.
Suppose you have a function, f(xt), and a deterministic steady–state, x. You can
obtain the linear approximation around the steady–state

f(xt) ≈ f(x) + f ′(xt)(xt − x).

If you then take the natural logarithm of both sides and rearrange, then

log f(xt) ≈ log f(x) + log f ′(xt)(xt − x)

log f(xt)− log f(x) ≈ log f ′(xt)(xt − x).

Note that the difference in logs is approximately interpreted as a growth rate

log(xt)− log(x) ≈ xt − x
x

.
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Example: Log–Linearization
Consider a function, f(At) = αAt, with a steady–state, A. The log–linear approx-
imation around the steady–state can be found

f(At) ≈ f(A) + f ′(At)(At −A)

log f(At) ≈ log f(A) + log f ′(At)(At −A)

logαAt ≈ logαA+
∂ log(αAt)

∂ logAt
(logAt − logA)

logαAt ≈ logαA+
∂(logα+ logAt)

∂ logAt
(logAt − logA)

logαAt ≈ logαA+ (1)(logAt − logA)

logαAt − logαA ≈ logAt − logA ≡ Ât.

Example: Log–Linearization
Consider a function, f(At, Bt) = At

Bt
, with a steady–states values A and B. The

log–linear approximation around the steady–state can be found

log

(
At
Bt

)
≈ log

(
A

B

)
+

(
∂[logAt − logBt]/∂At
∂[logAt − logBt]/∂Bt

)′(
logAt − logA

logBt − logB

)
log

(
At
Bt

)
≈ log

(
A

B

)
+

(
1
−1

)(
logAt − logA

logBt − logB

)
log

(
At
Bt

)
− log

(
A

B

)
≈ (logAt − logA)− (logBt − logB)

ˆ(
At
Bt

)
≈ Ât − B̂t.

Continuing with the transformed Euler equations

λ̃t = c̃−σt
l1−xt
1−x

w̃t = c̃t
1−σ

lt
1−x

λ̃t = β(1 + rt+1)γ−σx λ̃t+1,

the equations can be log-linearized around their steady–state values

ˆ̃
λt = −σˆ̃ct + (1− x)l̂t(1)

ˆ̃wt = ˆ̃ct +
ˆ̃
lt(2)

ˆ̃
λt = ˆ(1 + rt+1) +

ˆ̃
λt+1.(3)

4. The final steps are to put the system into Blanchard–Kahn form and solve. This
is an application of solving a system of forward–looking linear equations. You can
use equation (1) to substitute for ˆ̃ct everywhere. Next, you can use equation (2)

to substitute for
ˆ̃
lt everywhere. Next, you can log–linearize the time constraint

lt + nt = 1

lt
lt + nt

l̂t +
nt

lt + nt
n̂t = 0

lt l̂t + ntn̂t = 0,
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and substitute for n̂t everywhere. You will be left with 2 equations with variables
ˆ̃
kt,

ˆ̃
kt+1,

ˆ̃
λt,

ˆ̃
λt+1, and the exogenous shock zt. The initial capital, k0, is given. You

can then search for an unique non–explosive equilibrium. You can put the system
into Blanchard–Kahn form(

ˆ̃
kt+1

ˆ̃
λt+1

)
= A

(
ˆ̃
kt
ˆ̃
λt

)
+ Qẑt.

You can then solve for
ˆ̃
λt as a function of

ˆ̃
kt and ˆ̃zt. You can also solve for ˆ̃ct,

ˆ̃
lt, ˆ̃nt, ˆ̃yt,

ˆ̃
it, and ˆ(1 + r)t+1 as functions of

ˆ̃
kt and ẑt. This solves the linearized

version of the real business cycle model. The linear approximation is valid close
to the steady–state. If you have persistent shocks to ẑt, such as an AR(1) process

ẑt = ρẑt−1 + εt,

then you can treat ẑt−1 as an additional state variable with exogenous shock εt.
The Blanchard–Kahn form is then ẑt

ˆ̃
kt+1

ˆ̃
λt+1

 = A

 ẑt−1

ˆ̃
kt
ˆ̃
λt

+ Qεt.

You can then do Blanchard–Kahn in two–dimensional form, but use

Et ẑt+j = ρj ẑt,

for all j. You can then solve for
ˆ̃
λt accordingly. Note that the Blanchard–Kahn

solution looks similar to a VAR. With the log–linearized real business cycle model
above, you have

ˆ̃ct =

(
1− γ + δ

1 + rt+1

1

1 + σ

)
Et ˆ̃ct+1 +

γ + δ

1 + rt+1
κ1 Et X̂t+1

ˆ̃
kt+1 = κ2

ˆ̃
kt + κ3

ˆ̃ct − κ4ẑt.

The system can be written in Blanchard–Kahn form(
ˆ̃
kt+1

ˆ̃ct+1

)
= A

(
ˆ̃
kt
ˆ̃ct

)
+ Qẑt,

where
ˆ̃
kt+1 is the sate variable and ˆ̃ct+1 is the jump variable. Define the system as

xt+1 = Axt + Qzt.

You can diagonalize the matrix A,

A = PΛP−1.

Next you can substitute and normalize the system

xt+1 = PΛP−1xt + Qzt

P−1xt+1 = ΛP−1xt + P−1Qzt

x̂t+1 = Λx̂t + Qẑt.
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Example: The Blanchard–Kahn Method
You can use the Blanchard–Kahn method to solve the system

E
[
kt+1

λt+1

]
= A

[
kt
λt

]
+ Qεt.

First, you can find that one equation has an explosive root by diagonalize A

A = PΛP−1,

where

Λ =

[
Λ1 0
0 Λ2

]
.

Without loss of generality
|Λ2| > 1.

Note that Et λt+1 is unstable and λt is a jump variable. Next, you can substitute for A,
divide by P , and perform a change of variables

E
[
kt+1

λt+1

]
= PΛP−1

[
kt
λt

]
+ Qεt

P−1 E
[
kt+1

λt+1

]
= ΛP−1

[
kt
λt

]
+ P−1Qεt

EP−1zt+1 = ΛP−1zt + P−1Qεt.

If you impose a condition that the soulition should look like

Et z̃t+1 = Λz̃t + P−1Qεt,

then
Et λt+j = Λj2λt = 0.

You can now solve for a solution to the system.
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3.5. Monopolistic Competition and Nominal Rigidities

3.5.1. Nominal Rigidities

Reading: Mankiw, N. Gregory (1985). “Small Menu Costs and Large Business Cycles:
A Macroeconomic Model of Monopoly,” Quarterly Journal of Economics 100, 529-537.

Consider if there are costs for adjusting prices.

Definition: Menu Costs
Menu costs are small direct costs, with larger indirect cots, for adjusting prices.

Even second–order menu costs can have large effects on prices, quantities and welfare.
It is often not worthwhile for a firm to change its price.

Example: Suppose that there is a firm with price p. Assume that there is a menu cost,
z, to change price. The demand elasticity of the firm is θ such that

d logQ

d log(p/P )
= −θ.

Changes in P have the same effect in Q as changes in p. Note that

d log(p/p) = d log p− d logP.

So, first–order effects of changes in P on Q is

d logQ = −θ(d log p− d logP )

d logQ = θ d logP

d logQ

d logP
= θ,

but the effects of P on the firm’s profits are second–order

dπ

d(p/P )
= 0.

If there are second–order menu costs, z, the firm may not change its price, p. Therefore,
the menu costs, z, have fist–order effects on output, Q.

Example: Suppose that there is a monopolist that posts price p in advance, and chang-
ing price incurs cost c. Also, assume that there are shocks to the aggregate price index P .
Let the shocks be dP and the effects be dQ. The slope of the monopolist’s demand curve
is dp

dQ . The total change in quantity, dQ, is then the total change in price, dP , divided
by the slope of the monopolist’s demand curve. Note that, because of the monopolist’s
first–order conditions,

∂π

∂P
= 0.

Thus, for small changes in P it is not worthwhile to change prices. The key result is
that nominal rigidities require monopolistic competition.
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3.5.2. Monopolistic Competition

Reading: Avinash K. Dixit and Joseph E. Stiglitz (1977). “Monopolistic Competition
and Optimum Product Diversity,” American Economic Review 67, 297-308.

Reading: Blanchard, Olivier, and Nobuhiro Kiyotaki (1987). “Monopolistic Competi-
tion and the Effects of Aggregate Demand,” American Economic Review 77, 647-666.

Dixit and Stiglitz introduce a static, one–period, monopolistic competition macroeco-
nomic model with microfoundations. There are M varieties of goods and money, Y , in
the economy. The representative household has CES preferences

U(c1, . . . , cm, Y,N) =

( M∑
i=1

c
ε−1
ε

i

) ε
ε−1γ

(
Y

P

)1−γ
−Nβ,

where γ ∈ (0, 1), β ≥ 1, and ε > 0. Let pi denote the price of good i. The budget
constraint of the household is

M∑
i=1

pici + Y = wN.

The Lagrangian can be written as

L =

( M∑
i=1

c
ε−1
ε

i

) ε
ε−1γ

(
Y

P

)1−γ
−Nβ + λ(wN − PY −

M∑
i=1

pici).

The first order conditions for two goods, i and j, are

∂L

∂ci
=

( M∑
i=1

c
ε−1
ε

i

) ε
ε−1γ−1( ε

ε− 1

)(
ε− 1

ε

)
c
ε−1
ε −1

i

(
Y

P

)1−γ
− λpi = 0

∂L

∂cj
=

( M∑
i=1

c
ε−1
ε

i

) ε
ε−1γ−1( ε

ε− 1

)(
ε− 1

ε

)
c
ε−1
ε −1

j

(
Y

P

)1−γ
− λpj = 0.

It follows that for all goods j, that

c
ε−1
ε −1

i

c
ε−1
ε −1

j

=
pi
pj

c
ε−1
ε −

ε
ε

i

c
ε−1
ε −

ε
ε

j

=
pi
pj

c
−1
ε

i

c
−1
ε

j

=
pi
pj(

ci
cj

)− 1
ε

=
pi
pj

ci
cj

=

(
pi
pj

)−ε
.
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The household’s optimality condition is

ci
cj

=

(
pi
pj

)−ε
,

and the elasticity of substitution is

d log(ci/cj)

d log(pi/pj)
= −ε.

Define

C ≡
( M∑
i=1

c
ε−1
ε

i

) ε
ε−1

P ≡
( M∑
i=1

p1−ε
i

) 1
1−ε

It follows that

ci =

(
pi
P

)−ε
C,

and
M∑
i=1

pici = PC.

The households view items as identical. Preferences aggregate across goods. You can
write the household’s utility as

U(C, Y,N) = Cγ
(
Y

P

)1−γ
−Nβ,

where the utility function is additively separable in labor with Cobb–Douglas utility over
the combination of goods, C, and money, Y . From the budget constraint, you can find
that a household’s supply of labor is

N =
PC + Y

w
.

The household’s consumption of goods can be found from the optimization problem

max
C, Y

U = CγY 1−γ −
(
PC + Y

w

)β
.

The first order conditions are

γCγ−1Y 1−γ −
(
PC + Y

w

)β−1

βP = 0

(1− γ)CγY −γ −
(
PC + Y

w

)β−1

β = 0.

It follows that
γ

1− γ
Y

C
= P,

and the consumption of household h is

C∗h =
γ

1− γ

(
Y

P

)
.

iii - 29



Next, the firms set prices where each household, j = 1, . . . , n, has a downward–sloping
demand for good i

ch,i =

(
pi
P

)−ε
Ch.

The aggregate demand for good i is

Ci =
H∑
h=1

ch,i

Ci =

(
pi
P

)−ε H∑
h=1

Ch.

Thus the demand curve for firm i is

Ci =

(
pi
P

)−ε
C,

where C is aggregate consumption. If the variety of goods, M , is very large, then firm
i takes aggregate consumption, C, and the price index, P , as given. Consider firm i’s
profit maximization problem

max
pi,Yi,Ni

π = piYi − wNi

s. t. Yi = Nα
i

Yi =

(
pi
P

)−ε
Y,

where α ∈ (0, 1). By substitution, the profit maximization problem is

max
pi,Yi

π = piYi − wY
1
α
i

max
pi

π = pi

(
pi
P

)−ε
Y − w

(
pi
P

)− εα
Y

1
α

max
pi

π = p1−ε
i

(
1

P

)−ε
Y − wp

− εα
i

(
1

P

)− εα
Y

1
α

The first–order condition is

(1− ε)p−εi

(
1

P

)−ε
Y + w

(
ε

α

)
p
− εα−1

i

(
1

P

)− εα
Y

1
α = 0

(1− ε)
(
pi
P

)−ε
Y +

(
w

P

)(
ε

α

)(
pi
P

)− εα−1

Y
1
α = 0

(1− ε)
(
pi
P

)−ε
+

(
w

P

)(
ε

α

)(
pi
P

)− εα−1

Y
1
α−1 = 0

(1− ε) +

(
w

P

)(
ε

α

)(
pi
P

)− εα−1+ε

Y
1
α−1 = 0
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It follows that (
w

P

)(
pi
P

)− εα−1+ε

Y
1
α−1 =

ε− 1

ε
α(

pi
P

)− εα−1+ε

=
ε− 1

ε
α

(
w

P

)−1

Y 1− 1
α .

Thus (
pi
P

)1+ε
(

1
α−1

)

Markup above
marginal cost

=
ε

ε− 1

(
1

α

w

P
Y

1
α−1

)

Marginal cost

.

Note that if the firm’s demand is inelastic, then the firm would always set an infinite
price. Thus, the only nonexplosive equilibrium is for the demand for each good to be
elastic. All firms have the same production technology and face the same demand. This
implies that each firm sets the same optimal price, pi = p−i for all i. Thus,

pi
P

= 1.

Furthermore, there is a monopolistic underprovision externality, because each firm is
maximizing profits seperately there is a coordinationo failure to increase production.
So,

MPL >
w

P
= MRSh.

Suppose that prices are set in advance before money supply, Y . Then the central bank
can influence aggregate consumption, C, through changes in the real money balance, YP .
Note that everyone in the economy could be better off, even if firms could only change pi
by paying a menu cost. However, first–order effects of money supply, Y , and aggregate
consumption, C, only induce second–order effects on firm profits and a firm i may not
change pi. The conclusion is that the introduction of monopolistic competition may lead
to sticky prices in an economy.

Example: Symmetric Monopolistic Competition in the Labor Market
Suppose that there are n different types of labor and that each household, j = 1, . . . , n,
is a monopoly supplier of labor type j. The production function of firm i is

Yi =

( n∑
j=1

N
σ−1
σ

j

)α σ
σ−1

.

Firm i’s demand for labor j is

Nij =

(
wj
w

)−σ
Ni,

where

Ni ≡
( n∑
j=1

N
σ−1
σ

ij

) σ
σ−1

w ≡
( n∑
j=1

w1−σ
j

) 1
1−σ

.
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It is true that
n∑
j=1

wjNij = wNi.

The profits of firm i are

πi = piYi −
n∑
j=1

wjNij

πi = piYi − wNi,

where Yi = Nα
i . Thus, the firm’s optimal choice of labor, Ni, is the same as in the case

with homogeneous labor. However, the wage, w, is higher than the competitive wage.

Each household faces demand for labor

Nij =

(
wi
w

)−σ
Ni,

from each firm i = 1, . . . ,m. The total demand for the labor of household j is

m∑
i=1

Nij =

(
wj
w

)−σ m∑
i=1

Ni

Nj =

(
wj
w

)−σ
N,

where N is the aggregate demand for labor. Household j sets wj to maximize their utility
subject to the demand curve. The resulting first–order condition is(

wj
w

)1+σ(β−1)

=
σ

σ − 1
κw

P

w
Y

1
α (β−1).

Note that the households are undersupplying labor. Thus, a higher degree of monop-
olistic competition in the labor markets increases the monopolistic underproduction
externality.
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3.6. New Keynesian Economics

Classical macroeconomics assumes full employment, aggregate supply equals aggregate
demand, general equilibrium, and perfectly flexible prices and wages. Keynesian eco-
nomics assumes that the economy is in disequilibrium, nominal rigidities, aggregate
supply does not equal aggregate demand, and there is unemployment. New classical
macroeconomics assumes full employment, frictional unemployment, dynamic general
equilibrium, aggregate supply equals aggregate demand, and frictionless adjustment of
prices and wages. New Keynesian economics provides a framework to incorporate nom-
inal rigidities, menu–costs, contracts, dynamic general equilibrium, and the aggregate
supply equals aggregate demand while there are still imbalances between the trend of
supply and demand. New Keynesian models begin with microfoundations and are built
with representative households, monopolistic firms, and sticky prices, such as menu–
costs, lagged price setting, and staggered contracts.

The New Keynesian DSGE model produces monetary policy effects from unexpected
shocks to the nominal interest rate, εi,t 6= 0. The New Keynesian DSGE model is a
structural model, so, you can use the model to study monetary policy. For possible
extensions, you can add: a probability that firms use rule–of–thumb pricing, fiscal pol-
icy (i.e. government spending Gt), endogenous capital Kt by including investment such
that Yt = Ct + It + Gt (however this model is volatile without including capital ad-
justment costs), as well as sticky wages. Adding sticky wages to the model results in
unemployment and captures the true essence of Keynesian economics.

3.6.1. The New Keynesian DSGE Model

The New Keynesian Dynamic Stochastic General Equilibrium (NK–DSGE) considers an
economy with monopolistic firms and competitive labor. The model is used to determine
optimal policy decisions in response to exogenous shocks that cause deviation from the
economy’s steady–state. There is no capital for simplicity, the justification is that kt is
smooth in the short–run. Household consumption and price of goods from all firms are

Ct =

(∫ 1

0
ct(i)

(ε−1)/ε di

)ε/(ε−1)

Pt =

(∫ 1

0
pt(i)

(ε−1)/ε di

)ε/(ε−1)

.

The household’s problem is

max
{Ct,Nt}∞t=0

U = E0

∞∑
t=0

βt
[
C1−σ
t − 1

1− σ
− N1−ϕ

t

1− ϕ

]
Zt

s.t. PtCt +QtBt = Bt−1 + wtNt +Dt,

where Bt is the household’s stock of bonds that pay 1 unit of consumption, Qt is the
price of a 1 period nominal discounted bond (typically Qt < 1, Dt are dividends, Nt is
the household’s labor supply to all firms, and wt is the wage rate in period t. Notice
that if you let

Q =
1

1 + it
,

with interest rate it, then the problem is identical to the standard RBC model. The
budget constraint can be written as

Bt = (1 + it)(Bt−1 + wtNt +Dt − PtCt).
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The stochastic exogenous shocks
zt = logZt

follow an AR(1) process
zt = ρz + εz,t.

The Lagrangian for the household’s problem is

max
{Ct,Nt}∞t=0

L =
∞∑
t=0

βt
[C1−σ

t − 1

1− σ
−N

1−ϕ
t

1− ϕ

]
Zt−

∞∑
t=0

λt[Bt−(1+it)(Bt−1+wtNt+Dt−PtCt)].

The first order conditions are

λt =
βtC−σt Zt
(1 + it)Pt

,

λt =
βtNϕ

t Zt
(1 + it)wt

,

λt = (1 + it+1)λt+1.

The intratemporal optimality condition is:

Nϕ
t

C−σt
=
wt
Pt
.

The intertemporal optimality condition is:

C−σt Zt
(1 + it)Pt

= β(1 + it+1)
C−σt+1Zt+1

(1 + it+1)Pt+1
.

The Euler equation is:

C−σt = β Et
[ (1 + it)

(1 + πt+1)
C−σt+1

(Zt+1

Zt

)]
.

Inflation is defined as

Πt+1 ≡ 1 + πt+1 ≡
Pt+1

Pt
.

Notice that if there is zero inflation, π = 0 for all t, then

C−σ = β
1 + i

1
C−σ(1).

This implies that under zero inflation the nominal interest rate is inversely proportional
to the discount rate

1 + i = 1/β.

The next step is to log–linearize the Euler equation

−σĈt = ˆ(1 + it)− Et ˆ(1 + πt+1)− σ Et ˆCt+1 + Et Ẑt+1 − Ẑt.

Note that

ˆ(1 + it) = d log(1 + it) ≈ dit

ˆ(1 + πt+1) = d log(1 + πt+1) ≈ dπt+1 = πt+1,
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because there is no inflation, π = 0. Also note that

d logZt = dzt

d logZt+1 = dzt+1,

and
Et dzt+1 = ρz dzt.

It follows that

−σĈt = −σĈt+1 + dit − πt+1 + (ρz − 1) dzt

Ĉt = Ĉt+1 − 1
σ (dit − πt+1)− 1

σ (ρz − 1) dzt,

where
rt+1 ≡ it − πt+1.

It follows that
Ĉt = Et Ĉt+1 − 1

σ (Et drt+1)− 1
σ (ρz − 1) dzt.

Note that Yt = Ct, because there is no government spending and the economy is closed.
You can solve forward

Ŷt = − 1
σ Et(drt+1)− 1

σ (ρz − 1) dzt − 1
σ Et+1 drt+2 − 1

σ (ρz − 1)Et dzt+1 + Ŷt+2

Ŷt = − 1
σ Et

∞∑
j=1

drt+j − 1
σ Et

∞∑
j=0

(ρz − 1) dzt+j + lim
j→∞

Et Ŷt+j .

Note that limj→∞ Et Ŷt+j = 0, because Et dzt+j = ρjz dzt. It follows that

Ŷt = − 1
σ Et

∞∑
j=1

drt+j − 1
σ (ρz − 1)

∞∑
j=0

ρjz dzt

Ŷt = − 1
σ Et

∞∑
j=1

drt+j − 1
σ (ρz − 1) 1

1−ρz dzt.

You can now see that output today is negatively related to interest rates in the future.
Thus any deviation from steady-state output is related to long-term interest rates.

Ŷt = − 1

σ
Et
∞∑
j=1

drt+j +
1

σ
dzt.

Note that in the case of zero inflation, then

drt+j = rt+j − r = rt+j − i,

and the nominal interest rate is

i =
1

R
− 1.

The firm’s optimization problem. Each firm i is subject to a production function

Yt(i) = AtNt(i)
η,
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where technology follows an AR(1) process

at = logAt

at = ρaat−1 + εa,t.

Each firm i has a demand curve

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt.

The aggregate demand of the economy is∫ 1

0
Yt(i) dj =

∫ 1

0

(
Pt(i)

Pt

)−ε
Yt dj.

If firms are allowed to reset their prices every period, then the model is a repeated
Blanchard–Kiyotaki model. However, assume that there are nominal rigidities where
firms must post a contract price to satisfy demand.

Definition: Taylor Contracts
Taylor contracts are price contracts that last n periods.

Definition: Calvo Contracts
Calvo contracts are price contracts where every period the contract continues with prob-
ability θ and terminates with probability 1 − θ. The probability of price reset is inde-
pendent of contract duration and the price chosen. It is assumed that draws of θ are
i.i.d. and the expected lifetime is 1

θ periods.

Under Calvo contracts, in period t, there are 1 − θ firms that reset prices in period t.
You can also find that there are θ(1 − θ) firms in period t that reset prices in period
t− 1, and θj(1− θ) firms that reset prices in period t− j.

If a firm resets its price, then the optimal price, Pt(i), maximizes profits today and
expected in the future. The profit maximization problem is

max
{Pt((i)}

π =

∞∑
j=0

θj

Probability
still in effect

mt,t+j
1

Pt+j

Discount factor

[Pt(i)Yt+j(i)− wt+jNt+j(i)]

Nominal profits in t+j

.

The stochastic discount factor of the owners of the firms is

mt,t+j =
βjC−σt+j

C−σt
.

Note that

Yt+j(i) =

(
Pt(i)

Pt+j

)−ε
Yt+j .

So,

Nt+j(i) =

(
Yt+j(i)

At+j

) 1
η
.
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Note that

∂ log Yt+j(i)

∂ logPt(i)
= −ε.

∂Yt+j(i)

∂Pt(i)
= −εYt+j(i)

Pt(i)
.

Also remember that Ct+j = Yt+j , because there is no government spending or investment
in capital. A firm’s optimization problem can be written as

max
{Pt(i)}

π =
∞∑
j=0

θjmt,t+j
1

Pt+j
[Pt(i)Yt+j(i)− wt+jYt+j(i)

1
ηA
− 1
η

t+j ]

s. t. Yt+j(i) =

(
Pt(i)

Pt

)−ε
Yt+j

Yt+j(i) = At+j(i)Nt+j(i)
η.

The first–order condition is

∂π

∂Pt(i)
=
∞∑
j=0

θjmt,t+j
1

Pt+j

[
Yt+j(i)+Pt(i)

(
−εYt+j(i)

Pt(i)

)
−wt+j 1

η

(
Yt+j(i)

) 1
η−1(

−εYt+j(i)
Pt(i)

A
− 1
η

t+j

)]
= 0.

You can then solve for the optimal reset price

∞∑
j=0

θjmt,t+j
1

Pt+j
[1− ε)Yt+j(i) + ε

ηwt+jA
− 1
η

t+j
1

Pt(i)
Yt+j(i)

1
η ] = 0

∞∑
j=0

θjmt,t+j
1

Pt+j
[(1− ε)Yt+j(i)Pt(i) + ε

ηwt+jA
− 1
η

t+jYt+j(i)
1
η ] = 0

∞∑
j=0

θjmt,t+j
1

Pt+j
(1− ε)Yt+j(i)Pt(i) = −

∞∑
j=0

θjmt,t+j
1

Pt+j
ε
ηwt+jA

− 1
η

t+jYt+j(i)
1
η

Pt(i) = −
ε
η

∑∞
j=0 θ

jmt,t+j
1

Pt+j
wt+jA

− 1
η

t+jY
1
η
t+j

(1− ε)
∑∞

j=0 θ
jmt,t+j

1
Pt+j

Yt+j(i)

Pt(i) =
ε

ε− 1

∑∞
j=0 θ

jmt,t+j
1

Pt+j
Yt+j(i)wt+jY

1
η−1

t+j A
− 1
η

t+j
1
η∑∞

j=0 θ
jmt,t+j

1
Pt+j

Yt+j(i)

Pt(i) =
ε

ε− 1

∑∞
j=0 θ

jmt,t+j
1

Pt+j
Yt+j(i)

wt+j

ηYt+j(i)(η−1)/ηA
1/η
t∑∞

j=0 θ
jmt,t+j

1
Pt+j

Yt+j(i)
.

The above equation represents a firm’s monopoly markup over its marginal cost. Notice
that the total cost of production for a firm in period t is

TCt = wtNt,

where

Nt(i) =

(
Yt(i)

At

) 1
η
.
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The marginal cost for a firm at time t is

MCt =
wt

ηYt(i)(η−1)/ηA
1/η
t

,

and the marginal product of labor at time t is

MPLt = ηYt(i)
(η−1)/ηA

1/η
t .

You can also interpret the optimal price as a markup over the weighted current and
expected future marginal costs

Pt(i) =
ε

ε− 1

∑∞
j=0 θ

jβj
Y −σt+j

Y −σt

1
Pt+j

wt+j
1
η (Pt(i)Pt+j

)−ε/ηY
1/η
t+j A

−1/η
t+j∑∞

j=0 θ
jβj

Y −σt+j

Y −σt

1
Pt+j

(Pt(i)Pt+j
)−εYt+j

.

Any variable that does not depend on j can be brought out of the summation and
canceled

Pt(i) =
ε

ε− 1

Pt(i)
−ε/η

Pt(i)−ε

∑∞
j=0 θ

jβjY −σt+j
1

Pt+j
wt+j

1
ηP

ε/η
t+jY

1/η
t+j A

−1/η
t+j∑∞

j=0 θ
jβjY −σt+j

1
Pt+j

Pt(i)
1+ε(

1−η
η )

=
ε

ε− 1

∑∞
j=0 θ

jβjY
1/η−σ
t+j P

ε/η−1
t+j wt+jA

−1/η
t+j

1
η∑∞

j=0 θ
jβjY 1−σ

t+j P
ε−1
t+j

P 1−ε
t

P 1−ε
t

Pt(i)
1+ε(

1−η
η )

=
ε

ε− 1

∑∞
j=0 θ

jβjY 1−σ
t+j Y

1/η−1
t+j (

Pt+j
Pt

)ε/η
wt+j
Pt+j

1
ηA
−1/η
t+j P

1+ε((1−η)/η)
t∑∞

j=0 θ
jβjY 1−σ

t+j (
Pt+j
Pt

)ε−1

(
Pt(i)

Pt

)1+ε(
1−η
η )

=
ε

ε− 1

∑∞
j=0 θ

jβjY 1−σ
t+j (

Pt+j
Pt

)ε/η
wt+j/Pt+j

ηYt+j((η−1)/η)A
1/η
t+j∑∞

j=0 θ
jβjY 1−σ

t+j (
Pt+j
Pt

)ε−1
.

A firm’s real optimal price, relative to other prices in the economy, is a markup over the
economies average expected marginal cost.

You can let

(4)

(
Pt(i)

Pt

)1+ε(
1−η
η )

=
ε

ε− 1

Zn,t
Zd,t

,

where

Zn,t = Y 1−σ
t

wt/Pt

ηY
(η−1)/η
t A

1/η
t

+ βθEt[Π
ε/η
t+1Zn,t+1]

Zd,t = Y 1−σ
t + βθEt[Πε−1

t+1Zd,t+1],

and

Πt ≡
Pt+1

Pt
.

You can check

Zd,t =

∞∑
j=0

θjβjY 1−σ
t+j (

Pt+j
Pt

)ε−1.
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A firm’s marginal cost is equal to the real wage to marginal product of labor ratio

MCt =
wt/Pt
MPLt

.

The representative households set their trade–off between consumption and leisure such
that

MRSt = w.

Note that in equilibrium

ε
ε−1MCt = 1 = ε

ε−1

wt/Pt
MPLt

.

So,
wt
Pt

< MPLt,

because MCt < 1. The monopoly distortion results in a real wage less than the marginal
product of labor

wt < MPLt.

Also, note that the marginal rate of transformation is

MRT >
wt
Pt
.

So, the economy can trade–off an increase in the real wage for more production, but the
households have reached their optimal point where

MRSt =
wt
Pt
.

Therefore, there is an aggregate demand externality, because of underproduction

MRTt > MRSt.

The households are currently maximizing utility and are not better off from a transition.
Even if the agents owned the shares of the firms, there is still no one firm that wants to
change production first and aggregate coordination may not be possible.

If you assume a zero inflation steady–state, Pt → P , Yt → Y , wt → w, and Π→ 1, then

Zn = Y 1−σ w/P

ηY (η−1)/ηA1/η
+ βθZn

Zd = Y 1−σ + βθZd.

The steady state values are

Zn =
1

1− βθ

(
Y 1−σ w/P

ηY (η−1)/ηA1/η

)
Zd =

1

1− βθ
Y 1−σ.

Recall that

Pt =

(∫ 1

0
Pt(i)

1−ε di

)1/(1−ε)

P 1−ε
t =

∫ 1

0
Pt(i)

1−ε.
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Thus,

P 1−ε
t = (1− θ)P ∗t

1−ε

Porportion that
reset in period t

+ θ(1− θ)P ∗t−1
1−ε

Porportion that
reset last period

+ · · ·+ θj(1− θ)P ∗t−j
1−ε

Porportion that
reset in period j

+ . . .

Note that all firms choose the same reset price if they can reset. Also, the summation
of past prices governs yesterday’s price, P 1−ε

t−1 , so

P 1−ε
t = (1− θ)P ∗t

1−ε + θP 1−ε
t−1 .

It follows (
Pt
Pt−1

)1−ε
= (1− θ)

(
P ∗t
Pt

)1−ε( Pt
Pt−1

)1−ε
+ θ

Π1−ε
t = (1− θ)

(
P ∗t
Pt

)1−ε
Π1−ε
t + θ.

In the zero inflation steady–state

1 = (1− θ)
(
P ∗t
Pt

)1−ε
+ θΠε−1

t .

If you log–linearize, then

0 =
(1− θ)

(1− θ) + θ
(1− ε)[P̂ ∗t − P̂t] +

θ

(1− θ) + θ
(ε− 1)Π̂t.

This relates a firm’s reset price to inflation

Π̂t =
1− θ
θ

(P̂ ∗t − P̂t).

By log–linearizing the equation

(5)

(
Pt(i)

Pt

)1+ε(
1−η
η )

=
ε

ε− 1

Zn,t
Zd,t

,

you can determine if the chosen reset price has a positive or negative effect on inflation

(1 + ε(1−η)/η)(P̂ ∗t − P̂t) = Ẑn,t − Ẑd,t,

where

Ẑn,t = (1− βθ)[(1− σ)Ŷt + ŵt − P̂t − η−1
η Ŷt − 1

η Ât] + βθ( εη Π̂t+1 + Ẑn,t+1)

Ẑd,t = (1− βθ)(1− σ)Ŷt + βθ[(ε− 1)Π̂t+1 + Ẑd,t+1.

It follows that

Ẑn,t − Ẑd,t = (1− βθ)[ŵt − P̂t − η−1
η Ŷt − 1

η Ât] + βθ[(1− ε+ ε
η )Π̂t+1 + Ẑn,t+1 − Ẑd,t+1

(1 + ε(1−η
η )) θ

1−θ Π̂t = (1− βθ)[ŵt − P̂t − η−1
η Ŷt − 1

η Ât] + βθ[(1 + ε(1−η
η ))Π̂t+1] + βθ((1 + ε(1−η

η )) θ
1−θ Π̂t+1
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and

Π̂t = β Et Π̂t+1 +
(1− βθ)(1− θ)

θ

1

1 + ε((1− η)/η)

[
ŵt − P̂t −

η − 1

η
Ŷt −

1

η
Ât

]
.

If marginal costs are high, then firms will raise price. Conversely, if marginal costs are
low, then firms will lower price. Also, if firms expect inflation to be higher in the future,
then their optimal reset price will be higher. Alternatively, if firms expect inflation to
be lower in the future, then their optimal prices will be lower.

You can relate the output gap to inflation by defining a natural frictionless level of
output

Ŷn,t.

The natural level of output is the level of output firms would chose in a frictionless
economy without price stickiness. From the representative household’s optimization
problem, you can find that

ŵn,t − P̂n,t = ϕN̂n,t + σŶn,t

Marginal rate
of substitution

.

The competitive labor market implies that

ŵn,tPn,t =
ε

ε− 1
MPLt

ŵn,t − P̂n,t = Ŷn,t − N̂n,t.

If you log–linearize the production function you find

Ŷn,t = ϕN̂n,t + Ât.

It follows that

ϕN̂n,t + σŶn,t = Ŷn,t − N̂n,t

(1− σ)Ŷn,t = (1 + ϕ)N̂n,t

(1− σ)Ŷn,t = (1 + ϕ) 1
η (Ŷn,t − Ât)

[(1− σ)− 1+ϕ
η ]Ŷn,t = −1+ϕ

η Ât

Ŷn,t =
(1 + ϕ)/η

(1 + ϕ)/η − (1− σ)
Ân,t.

The frictionless level of output can be written as

Ŷn,t =
1

1− (1− σ)η/(1 + ϕ)
Ât.

If there is a positive technology shock, then both output and labor increase. Conversely,
if there is a negative technology shock, then both output and labor decrease. You can
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solve for the frictionless real wage and labor hours as well.

Next, note that

ŵt − P̂t = ϕN̂t + σŶt

ŵt − P̂t − η−1
η Ŷt − 1

η Ât = ϕN̂t + σŶt − η−1
η Ŷt − 1

η Ât

ŵt − P̂t − η−1
η Ŷt − 1

η Ât = ϕ
η (Ŷt − Ât) + σŶt − η−1

η Ŷt − 1
η Ât

ŵt − P̂t − η−1
η Ŷt − 1

η Ât = [σ + ϕ+1−η
η ]Ŷt − 1+ϕ

η Ât

ŵt − P̂t − η−1
η Ŷt − 1

η Ât = [σ + ϕ+1−η
η ]Ŷt − [1+ϕ

η − (1− σ)]Ŷn,t

and

Π̂t = β Et Π̂t+1 + (1−βθ)(1−θ)
θ

1
1+ε(1−η)/η (ŵt − P̂t − η−1

η Ŷt − 1
η Ât).

The New Keynesian Phillip’s Curve is

Π̂t = β Et Π̂t+1 + γ(Ŷt − Ŷn,t),

where

γ =
(1− βθ)(1− θ)

θ

1

1 + ε(1− η)/η

(
σ +

ϕ+ 1− η
η

)
.

If you define
Xt ≡ Ŷt − Ŷn,t,

then you can write the log–linearized gross inflation rate as

Π̂t = β Et Π̂t+1 + γXt,

where
Π̂t = ˆ(1 + πt) ≈ πt.

Furthermore, from the equation for deviation from steady state output, you can find
that

Ŷn,t = Et Ŷn,t+1 − 1
σ Et rn,t+1 + εy,t.

So, you can write the New Keynesian Investment–Savings (IS) Curve

Ŷt − Ŷn,t = Et(Ŷt+1 − Ŷn,t+1)− 1
σ Et(rt+1 − rn,t+1).

Note that the shock to the households’ preference for waiting is

εy,t = 1−ρz
σ Zt.

Approximations in the model are accurate for small percent deviations from steady–
state. Given the exogenous preference shock to Zt and the exogenous technology shock
to At, the central bank sets policy to influence the nominal interest rate as a function of
the realized output gap, Xt, and the rate of inflation, πt.
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3.6.2. Rational Expectations

Definition: The Taylor Rule
The Taylor Rule states that the central bank sets the nominal interest rate

it = i+ axt + bπt + εi,t,

where a > 0 and b > 0 are the bank’s chosen responses to the output gap, xt, and
inflation, Πt, respectively. You can then convert the nominal interest rate to the real
interest rate

rt+1 = it − πt+1.

The main idea is that household will have rational expectations for future interest rates

Et rt+1 = it − Et πt+1.

The New Keynesian DSGE model results in a system of 3 equations

xt = Et xt+1 − 1
σ Et(rt+1 − rn,t+1)

πt = β Et πt+1 + γxt + επ,t

it = axt + bπt + εi,t.

Assuming that the central bank can optimally choose a and b, you can solve the system
using the Blanchard–Kahn method. You can write the system in Blanchard–Kahn form
with 2 variables, xt and πt, using the Taylor rule, rt+1 = it − πt+1 and Et rt+1 =
it − Etπt+1. In order for there to be a unique solution to the system, the eigenvalues
must be of an appropriate magnitude. That is because xt and πt are both jump variables.
The eigenvalues of the Blanchard–Kahn matrix Λ must be greater than one in absolute
value, |λx| > 1 and |λπ| > 1. That is, you need to have explosive roots. The solution
will jump to the optimal value each period. Some values of (a, b) can violate eigenvalue
requirements. Note that both eigenvalues are explosive, |λx| > 1 and |λπ| > 1, if and
only if b > 1. Thus, if the central bank does not respond strongly to inflation, then
the model will not have a unique stable equilibrium and there will be many possible
equilibria.

Definition: The Taylor Principle
The Taylor Principle implies that good monetary policy should set b > 1.

Arguably, good fiscal policy will influence the real interest rate to fight inflation and let
the real interest rate respond positively to inflation. If not, then there will be multiple
equilibria. If b < 1, then there is 1 or no explosive eigenvalue and at least 1 nonexplosive
eigenvalue. Therefore, there will be many nonexplosive solutions. This allows the central
bank to make any policy choice and the economy will settle down. This is because (a, b)
are not pinned down and may fluctuate freely if b < 1.

Another caveat of the Taylor Rule is that there is an optimal steady–state rate of in-
flation. Note that a policymaker can try to set a positive output gap, xt > 0, because
of the monopolistic distortion. However, a higher output gap, xt, will lead to a higher
rate of inflation, πt. If a positive output gap is always set, xt = x > 0, then the rate of
inflation is

π = β Et π + γx

(1− β)π = γx

π =
1

1− β
γx.

iii - 43



Note that the rate of inflation π does not explode. The central bank can implement a
positive output gap, x > 0, without the economy exploding. However, an increase in the
rate of inflation, π, leads to an increase in the relative price dispersion, ∆. The central
bank can try to alleviate either the monopolistic or price distortion, but will increase the
other. That is, there is a trade–off between monopolistic distortion and price distortion.
Thus, the central bank can find an optimal balance between a positive output gap and
the level of relative price dispersion.

For the central bank to choose the optimal policy (a∗, b∗), then it needs to determine the
best potential outcome based on some criterion. You can hypothesize that the policy
maker has a loss function. Assume that the central banks desires to keep inflation low
and output close to trend. In this case, the central bank desires to minimize variation
in xt and πt. The loss function is

L = E0

∞∑
t=0

βt(π2
t + φx2

t ).

Given exogenous parameters, σ and γ, the central bank chooses a and b to minimize their
loss function. This is a linear–quadratic optimization problem. Thus, all the first–order
conditions are linear equations and the optimal policy can be solved for. Empirically, a∗

and b∗ are usually large. The optimization problem is

min
{a,b}

L = E0

∞∑
t=0

βt(π2
t + φx2

t )

s. t. xt = Et xt+1 − 1
σ Et[it − πt+1 − rn,t+1]

πt = β Et πt+1 + γxt + επt .

The Lagrangian for the problem is

min
{xt,πt,it}

L = E0

∞∑
t=0

βt(π2
t+φx

2
t )−λ1,t(xt−Et xt+1+ 1

σ Et[it−πt+1−rn,t+1])−λ2,t(πt−β Et πt+1−γxt−επ,t),

where

Et xt+1 =
S∑
s=1

Ps,t+1

Ps,t
xt+1.

You can then solve for the optimal nominal interest rate is,t at each time t and state st.
The first order conditions are

∂L

∂xt
= 0

∂L

∂πt
= 0

∂L

∂it
= 0.

There is an optimal commitment solution, because the model is completely specified.
However, the solution is not time–consistent. Normally, in dynamic programming, if
you reoptimize at a future date then then the new optimal plan is consistent with the
old optimal plan according to Bellman’s optimality principle. However, here there are
constraints that depend on expectations. If the policy maker wants to decrease the rate
of inflation, πt, then there are two main effects.
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• A decrease in the rate of inflation, πt,, results in a negative output gap, xt.
• By promising a negative output gap, xt+j , then there will be a lower expected

future rate of inflation, Etπt+1.
The central bank could attempt to spread the cost of disinflation across time. If there
is no commitment technology, then firms and households will not believe the plan and
it cannot be achieved. If the policy make reoptimizes at a future date, then a different
choice in policy will be made.

If you assume that the policy maker dislikes changing the interest rate quickly, perhaps
because of an adjustment cost. The loss function is then

L = E0

∞∑
t=0

βt(π2
t + φx2

t + ω(∆it)
2),

where θ and ω represent the central bank’s preferences. Empirically, this loss function
produces more reasonable policy choices (a∗, b∗). However, the problem with this ap-
proach is that it is ad hoc. The Federal Open Market Committee (OMC) uses this model
in practice.

Another method to produce cautionary policy is to introduce parameter uncertainty. If
you are uncertain about exogenous parameters then you introduce volatility from policy
choice. Large change in it and rt will lead to larger variances in xt and πt.

Another policy could be to choose (a, b) to maximize the households’ welfare

max
{a,b}

U = E0

∞∑
t=0

βt
[
C1−σ
t − 1

1− σ
− N1−ϕ

t

1− ϕ

]
Zt.

The major drawback is that the loss function is no longer linear–quadratic. Furthermore,
Gorman aggregation does not apply to welfare aggregation. A possible solution could
be to find a second–order approximation for the households’ welfare.

You can try various other interest rate rules. You can assume that the central bank
desires to find the best AR(p) process

it = ρ1itt− 1 + · · ·+ ρp + axt + bπt + εi,t.

Alternatively, the central bank could set the interest rate based on future expectations

it = aEt xt+1 + bEt πt+1 + εi,t.

You could compare different rules to find which performs best empirically.

Kidlen and Prescrott note that if you have no control over Et πt+1, then there is lack of
commitment to a chosen policy and there will be lack of belief from firms and households.
The first–order conditions of the policymaker’s optimization problem are different from
the commitment solution. Nevertheless, in equilibrium you can set πet = Et πt+1. The
policymaker cannot affect expectations of inflation, πet , or the output gap, xet . Therefore,
rational expectations are present in equilibrium. There is an optimal discretion solution
that is time consistent. There are no longer expectations that can be changed by promises
of the policymaker. Note that the optimal discretion solution is necessarily worse than
the optimal commitment solution that would be chosen if the policymaker could follow
through on promises.
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3.6.3. Price Dispersion in the New Keynesian DSGE Model

The New Keynesian DSGE model results in price dispersion where there are a range of
firms, some with high marginal costs and others with low marginal costs. The production
function of firm i is

Yt(i) = AtNt(i)
η.

The firm’s marginal cost is

MCt(i) =
wt/Pt

MPLt(i)
,

where the firm’s marginal product of labor is

MPLt(i) ≡ η
Yt(i)

Nt(i)
.

The average marginal product of labor in the economy is

MPLt ≈ η
Yt
Nt
.

Proof. The labor employed by firm i is

Nt(i) =

(
Yt(i)

At

) 1
η
.

The total labor employed in the economy is

Nt =

∫ 1

0
Nt(i) di.

It follows that

Nt =

∫ 1

0
Yt(i)

1
ηA
− 1
η

t di.

If you substitute for firm i’s demand, then

Nt = A
− 1
η

t

∫ 1

0

[(
Pt(i)

Pt

)−ε
Yt

] 1
η

di

Nt = A
− 1
η

t

∫ 1

0

(
Pt(i)

Pt

)− εη
Y

1
η
t di

Nt = Y
1
η
t A

− 1
η

t

∫ 1

0

(
Pt(i)

Pt

)− εη
di.

Thus,

Yt = AtN
η
t

[∫ 1

0

(
Pt(i)

Pt

)− εη
di

Measure of price dispersion

]−η
,

If price dispersion is low, then

MPLt =
∂Yt
∂Nt

≈ η Yt
Nt
.

�
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Define the level of price dispersion as

∆ ≡
[ ∫ 1

0

(
Pt(i)

Pt

)− εη ]η
.

Note that when there is more heterogeneity in prices the economy produces less.
You can write the production function as

Yt = At∆
−1
t Nη

t .

Claim: The level of price dispersion must be greater than or equal to unity

∆ ≥ 1.

Proof. Consider a convex function

f(x) =
(
x

ε
ε−1
) 1
η ,

where ε
ε−1 > 1, 1

η > 1, and η ∈ (0, 1). By Jensen’s inequality, a convex function of an
integral is less than or equal to the integral applied after the convex transformation∫ 1

0

(
x

ε
ε−1
) 1
η di

Average of the function

≥
[ ∫ 1

0
xi di

] ε
ε−1

1
η

Function of the average

.

If you let

x(i) =

(
Pt(i)

Pt

)1−ε
,

then ∫ 1

0

(
Pt(i)

Pt

)− εη
di ≥

[ ∫ 1

0

(
Pt(i)

Pt

)1−ε
di

] ε
ε−1

1
η
.

Recall that

Pt ≡
∫ 1

0
Pt(i)

1−ε di.

It follows that ∫ 1

0

(
Pt(i)

Pt

)− εη
di ≥ 1.

Thus,

∆ ≡
[ ∫ 1

0

(
Pt(i)

Pt

)− εη ]η
≥ 1.

�

The level of price dispersion is unity, ∆t = 1, if and only if all firms set the same price,
Pt(i) = Pt for all firms i. The socially optimal level of output is where

Yt = AtN
η
t .

In general,
Yt < AtN

η
t ,

because there are monopolistic distortions and there is relative price dispersion, ∆t > 1.
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Claim: Price dispersion, ∆t, is a second–order term near the zero inflation steady–state.

The idea is that at the zero inflation steady–state, then ∆ = 1. If there is a positive or
negative shock to the economy, then the first–order effect is d∆ = 0.

Proof. First, you can write the level of price dispersion

∆
1
η
t =

∫ 1

0

(
Pt(i)

Pt

)− εη
,

in recursive form as

∆
1
η
t = (1− θ)

(
P ∗t
Pt

)− εη
+ θ(1− θ)

(
P ∗t−1

Pt

)− εη
+ · · ·+ θj(1− θ)

(
P ∗t−j
Pt

)− εη
+ . . .

It follows that

∆t−1 = θ

(
P ∗t−1

Pt

)− εη
(1− θ)

(
P ∗t
Pt−1

)− εη
+ · · ·+ θj−1(1− θ)

(
Pt−j
Pt−1

)− εη
+ . . .

and

∆
1
η
t = (1− θ)

(
P ∗t
Pt

)− εη
+ θ

(
Pt−1

Pt

)− εη
∆

1
η
t−1

∆
1
η
t = (1− θ)

(
P ∗t
Pt

)− εη
+ θΠ

ε
η
t ∆

1
η
t−1.

If you log–linearize the relation, then

1

η
∆̂t =

1− θ
1− θ + θ

(
− ε

η

)(
P̂ ∗t − P̂t

)
+

θ

1− θ + θ

(
ε

η
Π̂t +

1

η
∆̂t−1

)
,

and

∆̂t = (1− θ)(−ε)(P̂ ∗t − P̂t) + θ(ε)Π̂t + θ∆̂t−1.

Recall that

Π̂ =
1− θ
θ

(P̂ ∗t − P̂t).

It follows that

∆̂t = (1− θ)(−ε)(P̂ ∗t − P̂t) + (1− θ)(ε)(P̂ ∗t − P̂t) + θ∆̂t−1,

and the level of price dispersion follows an AR(1) process

∆̂t = θ∆̂t−1.

Thus, first–order changes in price dispersion are affected only by the previous level of
price dispersion and not by any current period exogenous shocks. �
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3.6.4. Applications of New Keynesian DSGE Models

Reading: Woodford, Michael (2011). “Simple Analytics of the Government Expendi-
ture Multiplier,” American Economic Journal: Macroeconomics 3, 1-35.

3.7. Expectations and Time-Inconsistency

Reading: Barro, Robert, and David Gordon (1983). “Rules, Discretion, and Reputa-
tion in a Model of Monetary Policy,” Journal of Monetary Economics 12, 101-121.

3.8. Sticky Wages and Prices

Reading: Erceg, Christopher, Dale Henderson, and Andrew Levin (2000). “Optimal
Monetary Policy with Staggered Wage and Price Contracts,” Journal of Monetary Eco-
nomics 46, 281-313.

Reading: Christiano, Lawrence, Martin Eichenbaum, and Charles Evans (2005). “Nom-
inal Rigidities and the Dynamic Effects of a Shock to Monetary Policy,” Journal of
Political Economy 113, 1-45.

Reading: Smets, Frank, and Raf Wouters (2007). “Shocks and Frictions in US Business
Cycles: A Bayesian DSGE Approach,” American Economic Review 97, 586-606.

3.9. Macroeconomic vs. Microeconomic Elasticities

Reading: Altig, David, Lawrence Christiano, Martin Eichenbaum, and Jesper Lind’e
(2010). “Firm-Specific Capital, Nominal Rigidities, and the Business Cycle,” Review of
Economic Dynamics 14, 225-247.
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